\) 4
’ Laura Sach . [| Martin O’'Hanlon
A

‘._,
all

Create Graphical User
Interfaces with Python

How to build windows, buttons, and widgets
for your Python projects

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

&

2=

Raspberry Pi

PRESS

First published in 2020 by Raspberry Pi Trading Ltd, Maurice Wilkes Building,
St. John's Innovation Park, Cowley Road, Cambridge, CB4 0DS

Publishing Director: Russell Barnes * Editor: Phil King
Design: Critical Media
CEO: Eben Upton

ISBN: 978-1-912047-91-8

The publisher and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in this book.
Except where otherwise noted, the content of this book is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
(CC BY-NC-SA 3.0)

About the authors...

Martin O'Hanlon

Martin works in the learning team at the Raspberry
Pi Foundation, where he creates online courses,
projects, and learning resources. He contributes
to the development of many open-source projects
and Python libraries, including guizero. As a child,
he wanted to be a computer scientist, astronaut,
or snowboard instructor.

Laura Sach

Laura leads the A Level team at the Raspberry
Pi Foundation, creating resources for students
to learn about Computer Science. She somehow
also manages to make cakes, hug cats, and
wrangle a toddler.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Welcome!

his book will show you how to use Python to create some fun graphical user

interfaces (GUIs) using the guizero library. The guizero library started with the belief

that there must be an easier way for students in school to create Python GUIs. The
library itself was born one day on a long train journey from Cambridge, as the side project of a
secondary school teacher.

Guizero has grown significantly in terms of features, yet remained true to its original aim of
being simple but flexible. It is a library for all beginners to create with, for teachers to scaffold
learning with and for experts to save time with.

We hope that these projects and guizero brings you that little spark of excitement to
your Python programs. That spark might be anything from a button that does something
when you click it, to colours in your otherwise black and white Python programming, to a
full multicoloured Waffle.

It turns out that with open-source software, even if you don't know how to get the whole way
there, if you start, someone will help you. We are grateful to the many contributors who have
put time and effort into creating guizero, and to the thousands of people who have used it in
their projects. Enjoy your journey and be proud of your creations.

Laura and Martin

Contents

Chapter 1: Introduction to GUIs 008

How to install guizero and create your first app

Chapter 2: Wanted Poster 012

Use styled text and an image to create a poster

Chapter 3: Spy Name Chooser 018

Make an interactive GUI application

Chapter 4: Meme Generator 026

Create a GUI application which draws memes

Chapter 5: World's Worst GUI 036
Learn good GUI design by doing it all wrong first!

Chapter 6: Tic-tac-toe 044

Use your GUI to control a simple game

Chapter 7: Destroy the Dots 062

Learn how to use a Waffle to create a tasty game

6 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 8: Flood It 078

Create a more complex Waffle-based puzzle game

Chapter 9: Emoji Match 092

Make a fun picture-matching game

Chapter 10: Paint 110

Create a simple drawing application

Chapter 11: Stop-frame Animation 124

Build your own stop-frame animated GIF creator

Appendix A: Setting up 138

Learn how install Python and an IDE

Appendix B: Get started with Python 142

How to start coding in Python

Appendix C: Widgets in guizero 148

An overview of the widgets used in guizero

Chapter 1

Introduction to GUIs

WHAT YOU'LL NEED

You will need a computer (e.g. Raspberry
Pi, Apple Mac, Windows or Linux PC) and
an internet connection for the software
installation. You will also need the

following software installed:
+ Python 3 (python.org) — see Appendix A

< AnIDE (code editor), e.g.:
IDLE (installed with Python 3), Thonny
(thonny.org), Mu (codewith.mu),
PyCharm (jetbrains.com/pycharm)

+ The guizero Python library

(lawsie.github.io/guizero)

graphical user interface (GUI,
pronounced ‘gooey’) is a way of
making your Python programs
easier to use and more exciting. You can add
different components called ‘widgets’ to your
interface, allowing lots of different ways for
information to be entered in to the program
and displayed as output. You might want
to allow people to push a button, to display
a piece of text, or even let them choose an
option from a menu. In this book we will use
the guizero library, which has been developed
with the aim of helping beginners to easily
create GUIs.
Python’s standard GUI package is called
tkinter, and is already installed with Python

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

on most platforms. The guizero library is :ﬁ
Conrlmrgre S Uplewd S S |

a wrapper for tkinter — this means that — ——

it offers a much simpler way of using e with HTTRS "

. i ik or ke T arrg ek LB
Python'’s standard GUI library. | Y

Fitar gt oo Leard s gad pera gLk
Installing guizero I, m|
You will need to install the guizero
(lawsie.github.io/guizero) Python library IO An alternative way to install guizero is to
to create the programs in this book. It is download the zip file from GitHub

available as a Python package, which is
reusable code you can download, install, and then use in your programs.

How you install of guizero will depend on your operating system and the permissions you
have to control your computer.

If you have access to the command line / terminal, you can use the following command:

pip3 install guizero

Comprehensive installation instructions for guizero are available at lawsie.github.io/guizero,
including options for installing when you have no administration rights to your computer and
downloadable installations for Windows.

Hello World

Now that you have guizero installed, let’s check that it's working and write a small ‘hello
world’ app which is traditional for programmers to write as their first program when using a
new tool or language.

AIMS OF GUIZERO

- Able to be used without installation - Accessible to young children, but able be used

for advanced projects
Remove unnecessary code new learners find

difficult to understand + Good-quality documentation with examples

- Sensible widget names - Generate helpful error messages

Chapter 1 Introduction to GUIs

Open up the editor where you will write your Python

code. At the start of every guizero program, you will
choose the widgets you need from the guizero library
and import them. You only need to import each widget
once, and then you can use it in your program as many
times as you like.

At the top of the page, add this code to import the
App widget:

from guizero import App
I Figure 1 Your first guizero app
All guizero projects begin with a main window which is a container widget called an App. At the
end of every guizero program, you must tell the program to display the app you have just created.
Add these two lines of code underneath the line where you imported the App widget:

app = App(title="Hello world")
app.display()

Now save and run your code. You should see a GUI window with the title ‘Hello world’ (Figure
1). Congratulations, you've just created your first guizero app!

Adding widgets
Widgets are the things which appear on the GUI, such as text boxes, buttons, sliders, and
even plain old pieces of text.

All widgets go between the line of code to create the App and the app.display() line.
Here is the app you just made, but in this example we have added a Text widget:

from guizero import App, Text
app = App(title="Hello world")
message = Text(app, text="Welcome to the app")

app.display()
Did you notice that there are two changes (Figure 2)? There is now an extra line of code to
add the Text widget, and we have also added Text to the list of widgets to import on the very
first line.

Let's look at the Text widget code in a bit more detail:

message = Text(app, text="Welcome to the app")

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Just like any variable in Python, a widget needs a ?

name. This one is called ‘message’. Then we specify

that we would like this to be a ‘Text’ widget. Inside the

brackets are some parameters to tell the Text widget

what it should look like. The first one, ‘app’, tells the

Text where it will live. All widgets need to live inside

a container widget. Most of the time your widgets

will live directly inside an App, but you will discover

later that there are also some other types of container

widget you can put things in too. Finally, we tell the

widget to contain the text “Welcome to the app”. O Figure 2 Add a text message

01-helloworld.py / Python 3 § DOWNLOAD

from guizero import App, Text magpi.cc/guizerocode
app = App(title="Hello world")

message = Text(app, text="Welcome to the app")
app.display()

Chapter 1 Introduction to GUIs 11

Chapter 2

Wanted Poster

s WANTED ?.;.5.}"
X BE
A

NN\
DEEE
A

ow that you can create a basic GUI, let’'s make it look a bit more exciting. You can
add text in different fonts, sizes and colours, change the background colour, and
add pictures too. To practise all of this, let’s create a ‘Wanted’ poster.
First of all, you need to start off by creating an app. In your editor, add this code to create
the most basic app window:

I ST
from guizero import App

app = App("Wanted!")

app.display()

Save and run your code and you should see an app that
looks like a plain grey square with the title ‘Wanted!’ at
the top (Figure 1).

O Figure 1 The basic app

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Background colours EEE— T

Let's make the background of the app a bit different.
Traditionally, wanted posters look like they are made of
parchment, so let's add a pale yellow colour instead as
the background.
Find the line of code where you create the app.
Immediately after this line of code, add one more line
of code to modify the bg property of the window. In
this case, bg is short for ‘background’ and will let us
change the colour of the background. Now your code
should look like this: O Figure 2 Background colour

from guizero import App

app = App("Wanted!")
app.bg = "yellow"

app.display()

This is called editing a property. In the code, you need to specify the widget you are talking

about (app), the property you want to change (bg) and the value you want to change it to.
You might think this colour (Figure 2) is a bit too yellow, so let's look up the hex code of

a different yellow colour. There are lots of websites where you can search for colours, for

example you could try htmlcolorcodes.com (Figure 3).

FFRFRDO 264, 381, 30 a0, 17%, 9d%

(o]

jo° 838 Eyk 3
g

IO Figure 3 Selecting a shade on htmlicolorcodes.com

Chapter 2 Wanted Poster

When you have selected the colour you want,

you will see its code displayed on the site either

as hexadecimal (in this case #FBFBDO0) or as RGB
(251, 251, 208). You can use both of these formats
for setting colours in guizero; for example, you could
delete the code for making your background yellow
and then try one of these options in your program:

"#FBFBDO"
(251, 251, 208)

app.bg
app.bg

O Figure 4 Pale background

Add some text
Your app should look something like Figure 4. Now let's add some text to the GUI. We will
begin by adding the text that all good wanted posters need - the word ‘Wanted’!

First, look for the line of code you already have where you imported the App.

from guizero import App

You need to import Text to be able to create a piece of text, so add it to the end of the list.
Now the line looks like this:

from guizero import App, Text

Every time you want to use a new type of widget, add its name to the end of the list. There is
no need to keep adding whole new lines of code: just stick with one list so that your program
doesn't get too confusing.

Now that you can use text, let's add a piece of text. Remember that all widgets on the
GUI must be added between the line of code where you create the App and the line of code
where you display it. Your code should now look like this:

from guizero import App, Text

app = App("Wanted!")
app.bg = "#FBFBD@"

wanted_text = Text(app, "WANTED")

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Let's take a closer look at that line of code you just added.
wanted_text = Text(app, "WANTED")

Here, wanted_text is the name of the piece of text. This is so that we can talk about it later
on in the code - think of it like a person's name. (You could even call your piece of text Dave
if you want - the computer won't care!)

Inside the brackets we have two things. The second one, "WANTED", is straightforward as
it is the text we would like to display on the screen. The first is the container which controls
this piece of text, which is called its ‘master’. In this case we are saying that this text should
be controlled by the app. When you first start creating GUIs, most of your widgets will have
the app as their master, but there are other containers that can store widgets that you will
learn about later on.

Change text size and colour

Uh oh, this text is pretty small (Figure 5). Let's change the text_size property in exactly the
same way as you did when we changed the background colour of the app. Remember that
you needed to specify three things:

1. The name of the widget
2. Which property to change

. [e o
3. The new value to change it to Ty
So, in this case you are going to specify the widget O Figure 5 Text is too small

(wanted_text), the property to change (text_size)
and the new value (50). Add one new line of code immediately under the line where you
created the text, to change the property.

wanted_text = Text(app, "WANTED")
wanted_text.text_size = 50

You now have larger text on your poster (Figure 6). See if you can now change the font
of this text to something different. Which fonts are available depends on which operating
system you are using, so here are some suggestions:

+ Times New Roman T T
+ Verdana WAN TEI::'.I

= Courier

* Impact O Figure 6 Larger text

Chapter 2 Wanted Poster

No ‘wanted’ poster would be complete without a picture, so let's add one. My poster is going
to be for my cat, because she is always scratching things she shouldn’t be.

Save a copy of the image you would like to use in the same folder as your GUI program.
You can use images in other folders, but if you do you will have to provide the path to the
image, so it's a lot easier to just store them in the same folder when you are starting out.

IMAGE MANIPULATION

Because guizero is a library for beginners and we wanted to make it as easy as possible to install,

it does not come with the fancier image manipulation functions as these require an extra library
called 'pillow’. You can always use non-animated GIF images on any platform, and PNG images on all
platforms except Mac, so if you're not sure whether you have installed the extra image manipulation

functions, stick to those image types.

Hopefully you're now getting used to adding widgets. Remember that they must always be
imported at the top of the program, and then the widget created with a sensible name after
the line of code where you create the App, but before the final app.display() line.

Add 'Picture’ to the list of widgets to import at the start of the program.

from guizero import App, Text, Picture

Now create a Picture widget with two parameters: the app and the file name of the picture.
This is the code we used because our picture was called tabitha.png.

cat = Picture(app, image="tabitha.png")

Run your code (which should look like 02-wanted.py) e =i

again and you should see the picture displaying below WHN] E,D'
your text (Figure 7). S—

Now it's up to you to use your new GUI
customisation skills to style your poster however you
would like.

O Figure 7 The finished poster

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

READING THE DOCS

You might be wondering how to find out what properties a particular widget has that you can change.
Even if you are a complete beginner programmer, it is worth learning how to read documentation

because it will let you use the full power of guizero and any other libraries you come across.

The guizero documentation can be found at lawsie.github.io/guizero. Once you are there, click on the
widget you would like to change, and scroll down until you reach the properties section. For example, if
you select ‘Text’ under the heading of widgets, you will see all of the properties of a piece of Text that
you can possibly change. Documentation also often contains helpful snippets of code which show you
how to use a particular property or method, so don't be scared of having a look through — you never

know what you might learn!

02-wanted.py / Python 3 § DOWNLOAD

from guizero import App, Text, Picture magpi.cc/guizerocode

app = App(“"Wanted!™)
app.bg = "#FBFBDO"

wanted_text = Text(app, "WANTED™)
wanted_text.text_size = 50

wanted_text.font = "Times New Roman”

cat = Picture(app, image="tabitha.png")

app.display()

Chapter 2 Wanted Poster

Chapter 3

Spy Name Chooser

BARBARA

\

wooby Iad

it
|0

NN

QLI L L

TIBERIUS
SPINDLESHANKS

©

o far you've learnt how to

customise your GUI with a

variety of different options. It's
now time to get into the really interactive O Figure 1 Displaying the text in a window
part and make a GUI application that
actually responds to input from the user. Who could resist pushing a big red button to
generate a super secret spy name?

Since you already know how to create an app, why not go ahead and create a basic window

and add some text if you like? Here is some code to get you started, and this code also
includes some comments (the lines that start with a #) to help you structure your program:

Imports ---------------
from guizero import App, Text

Functions -------------

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy
name")

Display ---------------
app.display()

Run this code and you should see a window with the text (Figure 1).

Add a button
Let's go ahead and add a button to the GUI. Add PushButton to your list of imports so that
you can use buttons. (Be careful to use a capital B!)
Underneath the Text widget, but before the app displays, add a line of code to create
a button.

button = PushButton(app, choose_name, text="Tell me!")

Your code should now look like spy1.py (page 22). Run it and no button will appear, but you'll
see an error in the shell window:

NameError: name 'choose_name' is not defined

This is because choose_name is the

name of a command which runs when the ek Ev md el o Sl o yo e R
button is pressed. Most GUI components ﬂ

can have a command attached to them.

For a button, attaching a command O Figure 2 You now have a button

means “when the button is pressed, run

this command.” A GUI program works differently to other Python programs you might have
written because the order in which the commands are run in the program depends entirely
on the order in which the user presses the buttons, moves the sliders, ticks the boxes or
interacts with whichever other widgets you are using. The actual command is almost always

the name of a function to run.

Chapter 3 Spy Name Chooser

Create a function -
Let's write the function choose_name so s — EEER—— |

your button has something it can do when

Look at your program and find the

functions section. This is where you O Figure 3 Text is output to the shell window

should write all of the functions which will
be attached to GUI widgets, to keep them separate from the code for displaying the widget.
Add this code in the functions section:

def choose_name():
print("Button was pressed")

Your code should now look like spy2.py. The button will now appear (Figure 2). If you press
the button, it may appear that nothing has happened, but if you look in your shell or output
window, you will see that some text has appeared there (Figure 3).

Instructing your function to first print out some dummy text is a useful way of confirming
that the button is activating its command function correctly when it is pressed. You can then
replace the print statement with the actual code for the task you would like your button
to perform.

Inside your choose_name function, type a # symbol in front of the line of code that prints
"Button was pressed". Programmers call this ‘commenting out’, and what you have done
here is told the computer to treat this line of code as if it were a comment, or in other words
you have instructed the computer to ignore it. The benefit of commenting a line of code out
instead of just deleting it is so that if you ever want to use that code again, you can easily
make it part of your program again by removing the # symbol.

BIG RED BUTTON

At the moment, your button is not big or red! You used properties in the previous chapter to change
the appearance of your text on the ‘Wanted’ poster, so can you use the properties of the PushButton

widget to change the background colour and the text size?

Note that it may not bepossible to change the colour of a button on mac0S, as some versions of the

operating system will not allow you to do so, but you should still be able to alter the text size.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add some names =

On a new ling, add a list of first names. EXlsma ?

You can choose the names in your list

and there can be as many names as you - -

like, but make sure that each name is
between quotes, and the names are each B Figure 4 Outputting a spy name

separated by a comma. A collection of

letters, numbers, and/or punctuation between quotation marks is called a string, so we say

that each name must be a string.

first_names = ["Barbara", "Woody", "Tiberius", "Smokey",
"Jennifer"”, "Ruby"]

Now add a list of last names as well:

last_names = ["Spindleshanks", "Mysterioso", "Dungeon",
"Catseye", "Darkmeyer", "Flamingobreath"]

Now you will need to add a way of choosing a random name from each list to form your spy
name. Your first job is to add a new import line in your imports section:

from random import choice

This tells the program that you would like to use a function called choice which chooses a
random item from a list. Someone else has written the code which does this for you, and it is
included with Python for you to use.

In your code for the choose_name function, just below your lists of names, add a line of
code to choose your spy's first name, and then concatenate it together with the last name,
with a space in between. Concatenate is a fancy word that means ‘join two strings together’
and the symbol in Python for concatenation is a plus (+).

spy_name = choice(first_names) + " " + choice(last_names)
print(spy_name)

Your code should now resemble spy3.py. Save and run it. When you press the button, you
should see that a randomly generated spy name appears in your console or shell, in the
same place where the original "Button was pressed" message showed up before (Figure 4).

Chapter 3 Spy Name Chooser

Put the name in the GUI
That's good, but wouldn't it be nicer if
the spy name appeared on the GUI? Let's

Tuah e red Luee b i cul U s rers

make another Text widget and use it to
display the spy name.

In the widgets section, add a new Text
widget which will display the spy name: DO Figure 5 The finished spy name chooser

name = Text(app, text="")

When you create the widget, you don't want it to display any text at all as the person won't
have pressed the button yet, so you can set the text to ™, which is called an ‘empty string’
and displays nothing. Inside your choose_name function, comment out the line of code
where you print out the spy name.

Now add a new line of code at the end of the function to set the value of the name Text
widget to the spy_name you just created. This will cause the Text widget to update itself and

display the name.
name.value = spy_name

Your final code should be as in 03-spy-name-chooser.py. Run it and press the button to see
your spy name displayed proudly on the GUI (Figure 5).

You can press the button again if you don't like the name you are given, and the program
will randomly generate another name for you.

spy1.py / Python 3 § DOWNLOAD

Imports --------------- magpi.cc/guizerocode
from guizero import App, Text, PushButton

Functions -------------

App ---------mmmmmmm - oo
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")

Display ------=---c-u--
app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

SpY2.pV / Python 3

Imports ---------------
from guizero import App, Text, PushButton

Functions -------------
def choose_name():
print("Button was pressed")

App ----mmmemmmmmeeao-
app = App("TOP SECRET")

Widgets ---------------
title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")

Display ---------------
app.display()

SpY3.pV / Python 3

Imports ---------------
from guizero import App, Text, PushButton
from random import choice

Functions -------------
def choose_name():
#print("Button was pressed")
first_names = ["Barbara”, "Woody", "Tiberius", "Smokey",
"Jennifer", "Ruby"]
last_names = ["Spindleshanks™, "Mysterioso”, "Dungeon”,
"Catseye", "Darkmeyer", "Flamingobreath"]
spy_name = choice(first_names) + " " + choice(last_names)
print(spy_name)

App -------------mm- - oo
app = App("TOP SECRET")

Widgets ---------------

title = Text(app, "Push the red button to find out your spy name™)
button = PushButton(app, choose_name, text="Tell me!")

button.bg = "red”

button.text_size = 30

Display ---------------
app.display()

Chapter 3 Spy Name Chooser

23

03-spy-name-chooser.py / Python 3

Imports ---------------

from guizero import App, Text, PushButton
from random import choice

Functions -------------

def choose_name():

#tprint("Button was pressed")

first_names = ["Barbara”, "Woody", "Tiberius", "Smokey",
"Jennifer", "Ruby"]

last_names = ["Spindleshanks", "Mysterioso", "Dungeon",
"Catseye", "Darkmeyer", "Flamingobreath"]

spy_name = choice(first_names) + " "

#tprint(spy_name)

name.value = spy_name

+ choice(last_names)

app = App("TOP SECRET")
Widgets ---------------

title = Text(app, "Push the red button to find out your spy name")
button = PushButton(app, choose_name, text="Tell me!")

button.bg = "red”

button.text_size = 30

name = Text(app, text="")

Display ---------------

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 3 Spy Name Chooser 25

26

Chapter 4

Meme Generator

et's take the lessons you learnt from the previous chapters to create a GUI which
draws memes. You will input the text and image name and your GUI will combine them

into your own meme using the Drawing widget.

Start by creating a simple GUI with two text boxes for the top and bottom text. This is where
you will enter the text which will be inserted over your picture to create your meme. Add this
line to import the widgets needed.

from guizero import App, TextBox, Drawing
Then add this code for the app:

app = App("meme")

top_text = TextBox(app, "top text")
bottom_text = TextBox(app, "bottom text")

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

The meme will be created on a Drawing widget which will hold the image and text.

Create a meme
Add it to the GUI by inserting this code just before the app.display() line. The Drawing
widget's height and width should be set to fill’ the rest of the GUI.

meme = Drawing(app, width="fill", height="fill")

The meme will be created when the text in the top and bottom text boxes changes. To do that,
we will need to create a function which draws the meme.

The function should clear the drawing, create an image (we're using a photo of a
woodpecker, but you can use any you want) and insert the text at the top and bottom of
the image.

Remember when you used name.value to set the value of the Text widget with the spy
name in Chapter 3? You can also use the value property to get the value of a Text widget, so in
this case top_text.value means ‘please get the value that is typed in the top_text box'.

def draw_meme():
meme.clear()
meme.image(@, 0, "woodpecker.png")
meme.text (20, 20, top_text.value)
meme.text (20, 320, bottom_text.value)

The first two numbers in meme.image (0,
@) and meme.text(20, 20) arethex,y
co-ordinates of where to draw the image
and text. The image is drawn at position
@, ©, which is the top-left corner, so the
image covers the whole of the drawing.
Finally, call your draw_meme function just
before you display the app. Insert this code
just before the app.display line:

draw_meme ()

Your code should now look like meme1.py. O Figure 1 Meme with unstyled text

Chapter 4 Meme Generator

If you run your app (Figure 1) and try changing the top and bottom text, you will notice that

it doesn’t update in the meme. To get this working, you will have to change your program to
call the draw_meme function when the text changes, by adding a command to the two TextBox
widgets to the app.

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

Your code should now look like that in meme2.py. Run it and update your meme by changing
the top and bottom text.
You can then look of your meme by changing the color, size, and font parameters of the text.

For example:

meme . text (TIP
20, 20, top_text.value,
color="orange", These lines of code were
size=40, starting to get very long, so we
font="courier") have split them over a number

meme . text (of lines to make it easier to
20, 320, bottom_text.value, read. It doesn't affect what the
color="blue", program does, just how it looks.
size=28,
font="times new roman",
)

Your code should now look like meme3.py. Try different styles until you find something you
like (Figure 2).

Customise your meme generator
For a truly interactive meme generator, the
user should be able to set the font, size,
and colour themselves. You can provide
additional widgets on the GUI to allow
them to do this.

The number of options available for
the colour and font are limited, so you
could use a drop-down list, also known as

a Combo, for this. The size could be set
using a Slider widget.
O Figure 2 Alter the fonts and colours

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

First, modify your import statement to include the Combo and Slider widgets.

from guizero import App, TextBox, Drawing, Combo, Slider

After you have created your TextBox widgets for the top and bottom text, create a new Combo
widget so the user can select a colour.

bottom_text = TextBox(app, "bottom text", command=draw_meme)
color = Combo(app,
options=["black", "white", "red", "green", "blue", "orange"],
command=draw_meme)

The options parameter sets what colours the user can select from the Combo. Each colour is
an element in a list. You can add any other colours you want to the list.

The options are displayed in the order in which you put them in the list. The first option is
the default, which is displayed first. If you want to have a different option as the default, you
can do it using the selected parameter, e.g. "blue".

color = Combo(app,
options=["black", "white", "red", "green", "blue", "orange"],
command=draw_meme,
selected="blue")

Now your user can select a colour. Next, you need to change the draw_meme function to use
Combo’s value when creating the text in your the meme. For example:

meme . text (
20, 20, top_text.value,
color=color.value,
size=40,
font="courier")

Do the same for the bottom-text block of code. Your program should now resemble meme4.py.
Following the steps above, add a second Combo to your application so the user can select a

font from this list of options: ["times new roman", "verdana", "courier", "impact"].

Remember to change the draw_meme function to use the font value when adding the text.
Create a new Slider widget to set the size of the text your user wants.

size = Slider(app, start=20, end=40, command=draw_meme)

Chapter 4 Meme Generator

The range of the slider is set using the start and end parameters. So, in this example, the
smallest text available will be 20 and the largest 40.
Modify the draw_meme function to use the value from your size slider when creating the

meme's text.

meme . text (
20, 20, top_text.value,
color=color.value,
size=size.value,
font=font.value)

Your code should now resemble that in
04-meme-generator.py. Try running it and

you should see something like Figure 3.

Can you change the GUI so that the
name of the image file can be entered
into a TextBox or perhaps selected from
a list in a Combo? This would make your
application capable of generating memes
with different images too.

IO Figure 3 The finished meme generator

DRAWING WIDGET

The Drawing widget is really versatile and can be used to display lots of different shapes, patterns,

and images.

To find out more about the Drawing widget, see Appendix C, or take a look at the online

documentation: lawsie.github.io/guizero/drawing.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

meme1.py / Python 3 § DOWNLOAD

Imports --------------- magpi.cc/guizerocode

from guizero import App, TextBox, Drawing

Functions -------------
def draw_meme():
meme.clear()
meme.image(0, 0, "woodpecker.png”)

meme.text (20, 20, top_text.value)
meme.text (20, 320, bottom_text.value)

app = App(“meme”

top_text = TextBox(app, "top text")
bottom_text = TextBox(app, "bottom text™)

meme = Drawing(app, width="fi11", height="fi11")

draw_meme()

app.display()

meme2.py / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing

Functions -------------

def draw_meme():
meme.clear()
meme.image(0, 0, "woodpecker.png")
meme.text (20, 20, top_text.value)
meme.text(20, 320, bottom_text.value)

Chapter & Meme Generator 31

meme2.py (cont.) / Python 3

app = App('meme”

top_text = TextBox(app, "top text”, command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

meme = Drawing(app, width="fill", height="fi11")

draw_meme ()

app.display()

meme3.py / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing

Functions -------------

def draw_meme():

meme.clear()

meme.image(@, 0, "woodpecker.png")

meme . text(
20, 20, top_text.value,
color="orange",
size=40,
font="courier"

meme . text (
20, 320, bottom_text.value,
color="blue",

size=28,
font="times new roman",

32 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

meme3.py (cont.) / Python 3

app = App(“meme”

top_text = TextBox(app, "top text", command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

meme = Drawing(app, width="fill", height="fi11")

draw_meme()

app.display()

meme&4.py / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing, Combo, Slider

Functions -------------

def draw_meme():

meme.clear()

meme.image(0, 0, "woodpecker.png")

meme . text (
20, 20, top_text.value,
color=color.value,
size=40,
font="courier"

meme . text (
20, 320, bottom_text.value,
color=color.value,

size=28,
font="times new roman",

Chapter 4 Meme Generator

33

meme&.py (cont.) / Python 3

app = App('meme”

top_text = TextBox(app, "top text”, command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

color = Combo(app,

options=["black", "white", "red", "green", "blue",
"orange"],

command=draw_meme, selected="blue")
meme = Drawing(app, width="fi11", height="fi11")

draw_meme ()

app.display()

04-meme-generator.py / Python 3

Imports ---------------

from guizero import App, TextBox, Drawing, Combo, Slider

Functions -------------

def draw_meme():

meme.clear()

meme.image(@, 0, "woodpecker.png")

meme . text(
20, 20, top_text.value,
color=color.value,
size=size.value,
font=font.value)

meme . text (
20, 320, bottom_text.value,
color=color.value,
size=size.value,
font=font.value,

)

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

04-meme-generator.py / Python 3

app = App(“meme”

top_text = TextBox(app, "top text”, command=draw_meme)
bottom_text = TextBox(app, "bottom text", command=draw_meme)

color = Combo(app,

options=["black", "white", "red", "green", "blue",
"orange"],

command=draw_meme, selected="blue")

font = Combo(app,

options=["times new roman", "verdana", "courier",
"impact"],

command=draw_meme)

size = Slider(app, start=20, end=50, command=draw_meme)

meme

Drawing(app, width="fill", height="fill")

draw_meme()

app.display()

Chapter & Meme Generator 35

36

Chapter 5

World’'s Worst GUI

#13A751 RS

Well done!
You started
the application.

‘,‘\% i
2615589218 @ 7{}
— . 4
ts time to really go to town with your GUIs and experiment with different widgets,

colours, fonts, and features. Like most experiments, it’s likely that you won't get it right
first time! In fact, you are going to explore the wrong way to approach creating your GUI.

Are you sure?

s | [MO

It's hard to read
The right choice of GUI colour and font are important. It's important that the contrast between
background and text colour ensure that your GUI is easily readable. What you shouldn't do it is

use two very similar colours.
Import the widgets at the top of the code:
from guizero import App, Text
Create an app with a title:
app = App("it's all gone wrong")

title = Text(app, text="Some hard to read text")

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

app.display()

Experiment by changing the colours, font, and text size (see worst1.py listing, page 41). My
choices are not the best!

app = App("it's all gone wrong", bg="dark green")
title = Text(app, text="Some hard-to-read text", size="14",
font="Comic Sans", color="green")

It's important that text on a GUI also stays around long enough to be read. It certainly shouldn't
disappear or start flashing.

All widgets in guizero can be made invisible (or visible again) using the hide() and show()
functions. Using the repeat function in guizero to run a function every second, you can make
your text hide and show itself and appear to flash.

Create a function which will hide the text if it's visible and show it if it's not:

def flash_text():
if title.visible:
title.hide()
else:
title.show()

Before the app is displayed, use repeat to make the flash_text function run every 1000
milliseconds (1 second).

app.repeat(1000, flash_text)

app.display()

Your code should now look like worst2.py. Test your app: the title text should flash, appearing
and disappearing once every second.

The wrong widget
Using an appropriate widget can be the difference between a great GUI and one which is
completely unusable.

Which widget would you use to enter a date? A TextBox? Multiple Combos? A TextBox
would be more flexible but would require validation and formatting. Multiple Combos for year,
month, and day wouldn't require validating but would be slower to use.

Chapter 5 World's Worst GUI 37

ThusJam B3 08SSENT 1R7

raNzay
L —
- -Ir e e e 1 R R A | |
O Figure 1 A slider to set date and time IO Figure 2 Combos to choose letters

Using a Slider to set a date and time (Figure 1), as in the worst3.py code example, is not a
great idea, though.

The Slider widget returns a number between 0 and 999,999,999. This is the number of
seconds since 1 January 1970. The function ctime() is used to turn this number into a date
and time.

Getting text from your user is simple: a TextBox or a multi-line TextBox should fulfil all your
needs. Is it too simple, though. Does this require too much typing?

What about the user who just wants to use a mouse? Perhaps a series of Combos each
containing all the letters in the alphabet would be better (Figure 2)?

Start by importing the guizero widgets and ascii_letters.

from guizero import App, Combo
from string import ascii_letters

ascii_letters is a list containing all the ‘printable’ ASCII characters which you can use as
the options for the Combo.
Create a single Combo which contains all the letters and displays the app.

a_letter = Combo(app, options= + ascii_letters, align="left")

app.display()
Your program should now resemble worst4.py. Running it, you will see a single Combo which

contains all the letters plus a space and is aligned to the left of the window.
To get a line of letters together, you could continually add Combo widgets to your app, e.qg.:

a_letter = Combo(app, options=" " + ascii_letters, align="left")
b_letter = Combo(app, options=" " + ascii_letters, align="left")
c_letter = Combo(app, options=" " + ascii_letters, align="left")

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

By aligning each Combo widget to the left, T

the widgets are displayed next to each other
against the left edge.

Alternatively, you could use a for loop,
create a list of letters, and append each letter
to the list, as shown in worst5.py.

Try both these approaches and see which
you prefer. The for loop is more flexible as it
allows you to create as many letters as you like. ¥

Pop-ups
No terrible GUI would be complete without
a pop-up box. guizero contains a number of
pop-up boxes, which can be used to let users IO Figure 3 Pointless pop-up
know something important or gather useful
information. They can also be used to irritate and annoy users!
First, create an application which pops up a pointless box at the start to let you know the
application has started.

from guizero import App
app = App(title="pointless pop-ups")

app.info("Application started”, "Well done you started the
application")

app.display()

Running your application, you will see that an ‘info’ box appears (Figure 3). The first parameter
passed to info is the title of the window; the second parameter is the message.

You can change the style of this simple pop-up by using warn or error instead of info.
Pop-up boxes can also be used to get information from the user. The simplest is a yesno
which will ask the user a question and get a True or False response. This is useful if you want
a user to confirm before doing something, such as deleting a file. Perhaps not every time they

press a button, though!
Import the PushButton widget into your application:

from guizero import App, PushButton

Create a function which uses the yesno pop-up to ask for confirmation.

Chapter 5 World’s Worst GUI

def are_you_sure():
if app.yesno("Confirmation", "Are you sure?"):
app.info("Thanks", "Button pressed")
else:
app.error("0k", "Cancelling")

Add the button to your GUI which calls the function when it is pressed.

button = PushButton(app, command=are_you_sure)

Your code should now resemble 05-worlds-worst-gui.py.

When you run the application and press the button, you will see [mead=iax]
a pop-up asking to you confirm with a Yes or No (Figure 4). £l Areyou sera®
You can find out more about the pop-up boxes in guizero at | e |

lawsie.github.io/guizero/alerts.
How about combining all of these ‘features’ into one

great GUI? O Figure 4 Yes, we're sure!
WINDOW WIDGET
Pop-up boxes can be used to ask users You can control whether a Window is on screen
questions, but they are really simple. using the show() and hide () methods.

If you want to do show additional information
or ask for supplementary data, you could use the ~ window.show()
Window widget to create multiple windows. window.hide()
Window is used in a similar way to App and
has many of the same functions. An app can be made to wait for a window to be
closed after it has been shown, by passing True

from guizero import App, Window to the wait parameter of show. For example:

app = App("Main window") window.show(wait=True)
window = Window(app, "2nd Window")

You can find out more about how to use multiple
app.display() windows in the guizero documentation:

lawsie.github.io/guizero/multiple_windows.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

worst1.py / Python 3 § DOWNLOAD

Imports --------------- magpi.cc/guizerocode

from guizero import App, Text

app = App("its all gone wrong", bg="dark green")

title = Text(app, text="Hard to read", size="14", font="Comic
Sans", color="green")

app.display()

worst2.py / Python 3

Imports ---------------

from guizero import App, Text

Functions -------------

def flash_text():
if title.visible:
title.hide()
else:
title.show()

app = App("its all gone wrong", bg="dark green")

title = Text(app, text="Hard to read", size="14", font="Comic
Sans", color="green")

app.repeat(1000, flash_text)

app.display()

Chapter 5 World's Worst GUI 41

worst3.py / Python 3

Imports ---------------

from guizero import App, Slider, Text
from time import ctime

Functions -------------

def update_date():
the_date.value = ctime(date_slider.value)

app = App("Set the date with the slider")

the_date = Text(app)

date_slider = Slider(app, start=0, end=999999999, command=update_
date)

app.display()

worst4.py / Python 3

Imports ---------------
from guizero import App, Combo
from string import ascii_letters

app = App(“Enter your name")

a_letter = Combo(app, options= + ascii_letters, align="left")

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

worst5.py / Python 3

Imports ---------------

from guizero import App, Combo
from string import ascii_letters

app = App("Enter your name")

name_letters = []
for count in range(10):

a_letter = Combo(app, options=" " + ascii_letters,
align="1left")

name_letters.append(a_letter)

app.display()

05-worlds-worst-gui.py / Python 3

from guizero import App, PushButton

def are_you_sure():
if app.yesno(“Confirmation", "Are you sure?"):
app.info("Thanks", "Button pressed")
else:
app.error('0k", "Cancelling")

app = App(title="pointless pop-ups")
button = PushButton(app, command=are_you_sure)

app.info("Application started”, "Well done you started the
application")

app.display()

Chapter 5 World's Worst GUI 43

Chapter 6

Tic-tac-toe

ow that you have learnt how to make a basic GUI, let's add some more programming
logic behind the scenes to make your GUI work as the means of controlling a game
of tic-tac-toe (also known as noughts and crosses).

Create a new file with the following code:

Imports ---------------
from guizero import App

Functions -------------

Variables -------------

app = App("Tic tac toe")

app.display()

44 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create the board

Let’s begin by creating the widgets which
will make up the game board. A traditional
tic-tac-toe board looks like the one shown
in Figure 1.

You'll use buttons to represent each of
the positions on the board, so that the player
can click on one of the buttons indicating
where they would like to move. To be able
to lay out the buttons on a grid, let's create a
new type of guizero widget called a Box.

A Box is a container widget. This means
that it is used for containing other widgets
and grouping them together. Add it to the
imports at the top of your code:

from guizero import App, Box,

OIX

O Figure 1 A typical game of tic-tac-toe

Set the Box to have a grid layout and add it to your app — before the app.display() line, as

with all widgets.

board = Box(app, layout="grid")

If you run your program at this point, you won't see anything on the screen because the Box

itself is invisible.

Now let's create the buttons to go inside it. You will need nine buttons in total, so instead of

creating them individually, you can use a nested loop to generate them all automatically and
give them co-ordinates. First, add PushButton to your list of widgets to import and then add
this code immediately after the code for the board you just created.

for x in range(3):
for y in range(3):
button = PushButton(

board, text="", grid=[x, y], width=3

Chapter 6 Tic-tac-toe

45

O Figure 2 A grid of nine buttons to play tic-tac-toe

Notice that there are two loop variables: x from 0 to 2 and y from 0 to 2. As we iterate and
generate buttons, each button will be added to the board, which is the Box container you
created earlier. The button will be given the grid co-ordinates x,y, meaning that each button is
neatly placed on a grid at a different position!

Your code should now look like tictactoe1.py. The result of running it is shown in Figure 2.

Underlying data structure

You might notice that when you create the buttons using a loop, you are creating nine buttons
automatically and every single one is called button. How will you be able to refer to each of
these buttons in the program?

The answer is that you need an underlying data structure to hold a reference to each button,
and for this you will use a two-dimensional list.

Let's create a function which we can call to clear the board. It is a good idea to do this in a
function so that you can reuse the code once the game has been played to reset the board and
allow the player to begin a fresh game.

In the functions section, add a new function called clear_board.

def clear_board():

Your first job inside this function is to initialise the data structure for the board. Let's assume
at this point you have not created any buttons, so you can initialise each position on the board
as None - the element in the list now exists but does not yet have a value. Add the following
line, indented, to your function.

new_board = [[None, None, None], [None, None, None], [None, None,
None]]

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Next, move the nested loop code from your app section into the clear_board function. Make
sure the indentation is correct.

Inside the inner (y) loop, add a line of code to store a reference to each button at its x,y co-
ordinate position within the two-dimensional list so that you can refer to it later.

new_board[x][y] = button

Finally, after the loops end, return the new_board you have just created. Your function should
look like this:

def clear_board():
new_board = [[None, None, None],
[None, None, None],
[None, None, None]]
for x in range(3):
for y in range(3):
button = PushButton(
board, text="", grid=[x, y], width=3
)
new_board[x][y] = button
return new_board

In the app section, initialise a list called board_squares and set it to call the new function you
just created.

board_squares = clear_board()

This variable will be assigned the value of the new_board you created within the function,
which should be a blank board with nine buttons. Make sure that you create this variable after
the code for creating the Box, otherwise you will be trying to add buttons to a container that
does not yet exist.

Your code will now resemble tictactoe2.py. Save and run the program and you should see
an identical result to the one you had at the end of the last step, but now you have a hidden
two-dimensional list data structure to let you reference and manipulate the buttons.

If you want to see what your 2D list looks like, you could add a print command to print the
board_squares list: print(board_squares). You should then see nine lots of [PushButton]
object with text "" appear in the shell.

Chapter 6 Tic-tac-toe

Make the buttons work
At the moment, your buttons don't do anything when you press them. Let’s make a function to
attach to the button, so that when it is pressed, the button displays either X or O depending on

which player chose it.
First, create a variable in the variables section to record whose turn it is. You can choose to
start with either player, but we will choose to start with X.

turn = "X"

This now means that you need to display on the GUI whose turn it is (Figure 3) so the players
don't get confused. Add Text to your list of widgets to import:

from guizero import App, Box, PushButton, Text
Then add a new Text widget in the app section to display the turn.
message = Text(app, text="It is your turn, " + turn)
Move to the functions section and create a new function called choose_square.
def choose_square(x, y):

You will notice that this function takes two arguments — x and y. This is so that you know
which square on the board has been clicked.

Tl tas o

I'Haynuf’ﬂ.m.}t

O Figure 3 Let your players know whose turn it is

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add the following code (indented) inside the function to set the text inside the button that
was clicked to the symbol of the current player, and then disable the button so it cannot be
clicked on again.

board_squares[x][y].text = turn
board_squares[x][y].disable()

Finally, connect this function to the button. Find this line of code inside your
clear_board function:

button = PushButton(board, text="", grid=[x, y], width=3)
Modify it so that it looks like the line below:

button = PushButton(board, text="", grid=[x, y], width=3,
command=choose_square, args=[x,y])

You have added two things here. Firstly, you are attaching a command, just as before. When
the button is pressed, the function with this name will be called. Secondly, you are also
providing arguments to this function, which are the co-ordinates x and y of the button which
was pressed, so that you can find that button again in the list.

Your program should now look like tictactoe3.py. Save and run it. You will now be able to
click on a button and it will change to an X. Unfortunately, in this version of the game it is
permanently X's turn!

Alternating between players
Once one player has taken their turn, the turn variable should toggle to be the other player.
Here is a function which will toggle from X to O and vice versa.

def toggle_player():
global turn

if turn == "X":
turn = "0"
else:
turn = "X"

Add the code in your functions section. Notice the first line in the function: global turn. You
need to specify this so that you are allowed to modify the global version of the turn variable,
i.e. the one you already created. If you don't specify this, Python will create a local variable
called turn and modify that instead, but that change won't be saved once the function exits.

Chapter 6 Tic-tac-toe 49

You also need to make sure that the Text widget accurately reports the current player’s turn.

After the if/else statement in the toggle_player function, update the message like this:

message.value = "It is your turn, " + turn

Go back to your choose_square function and call the toggle_player function — with
toggle_player() — once you have set the text and disabled the button. Your code should
now resemble tictactoe4.py. Save and test the program again and you should find that you can
click squares and they will alternately be designated either X or O.

Do we have a winner?
Finally, you need to write a function which will check whether there is a row, column, or
diagonal of three Xs or Os, and if so will report the winner of the game.

Although it seems very inelegant, by far the easiest way to check if someone has won is to
hard-code the checks for each vertical, horizontal, and diagonal line individually.

The following code is for one vertical line, one horizontal line, and one diagonal — can you
add the rest?

def check_win():
winner = None

Vertical lines
if (
board_squares[0][0].text == board_squares[@][1].text
board_squares[0][2].text
) and board_squares[@][2].text in ["X", "0"]:
winner = board_squares[0][0]

Horizontal lines
elif (
board_squares[0][0].text == board_squares[1][0].text
board_squares[2][0].text
) and board_squares[2][@0].text in ["X", "0"]:
winner = board_squares[0][0]

Diagonals
elif (
board_squares[0][0].text == board_squares[1][1].text ==
board_squares[2][2].text

50 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

) and board_squares[2][2].text in ["X", "0"]:
winner = board_squares[0][0]

Notice that the function begins by creating a Boolean variable called winner. If by the time
the long if/elif statement has been executed, the value of this variable is True, you know that
someone has won the game.

After adding the remaining winning line checks, add some code at the end of the function to
change the display message if there has been a winner:

if winner is not None:
message.value = winner.text +

wins!"

You now need to make sure that this function is called each time an X or O is placed, which
corresponds to any time a button is pressed. Add a call to check_win at the end of the
choose_square function, just in case the square that was chosen was the winning square.

Your program should now look like tictactoe5.py. Run it and test the game. If you wrote
the tests in the check_win function correctly, you should find that the game detects correctly
when a player has won.

RESET THE GAME

At the start, you wrote a function called clear_board. This may have seemed unnecessary at the
time, but in actual fact it was thinking ahead to when the game has ended. Since tic-tac-toe is quite a

short game, it is likely that someone might want to play more than one game in a row.

Can you add a reset button to your game, which only appears once either someone has won the game,
or the game was a draw? The button should call the clear_board function and reset the turn

variable as well as the message reporting whose turn it is.

Hint: You will need to check the guizero documentation to find out how to hide and show widgets, so

that your button is not visible all of the time during the game.

Hint: Create a new function which takes care of everything you need to do to reset the game, and call
that function when the reset button is pressed. Don't forget that in your function you'll need to specify

some variables as global.

Chapter 6 Tic-tac-toe

Draw game

At the moment, the game will allow you to continue playing even after it has been won, until all
of the squares are selected. It will also not tell you if the game was a draw. You could stop at
this point, but if you really want to put the icing on the cake, adding a few more little touches

could make your game more polished.

First, let's add some code to detect whether the game is a draw. The game is a draw if all of
the squares contain either an X or an O, and no one has won. In the functions section, create a
new function called moves_taken:

def moves_taken():

You're going to use this function to count the number of moves which have been made, so let’s
start a variable to keep count, initially beginning at 0.

def moves_taken():
moves = @

Now, remember when we created the board_squares, we used a nested loop to create all of
the squares on the grid? We're going to need another nested loop here to check each and
every square and determine whether it has been filled in with an X or O, or whether it is blank.

GLOBAL VARIABLES

It is arguably a bad idea to use global variables because if you have many functions in a large program,
it can become extremely confusing as to which code modifies the value of a variable and when. In a

small program like this, it is not too difficult to keep track.

Remember that it is possible to read and use the value of a global variable from inside a function
without declaring it global, but in order to modify its value you will need to explicitly declare this. The
functions in this program (and most GUI programs in this book) are actually modifying the values of
your widgets as global variables. For example, when someone wins the game, you set the value of the

message to display who won:

message.value = winner.text + " wins!"

In this example, message is a global variable. So how can we modify its value without declaring it as
global? The answer is because we are using a property of the message widget, the property called
value. Essentially what this code is saying is “Hey Python, you know that widget over there called
message? Well, could you modify its value property please?” Python will allow modification through
object properties in the global scope, but it won't allow you to directly modify the value of a variable

without declaring it global.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add this code for a nested loop to the moves_taken function:

for row in board_squares:
for col in row:

Inside the loop, we need to check whether that particular square is filled in with an X or an O. If
it is, add 1 to the moves variable to record that square has been counted.

if col.text == "X" or col.text == "0":
moves = moves + 1

Finally, once the loops have finished, add a return statement to return the number of
moves taken.

return moves

Now, call this function inside the check_win function, to check for a draw. Add this code after
the code that checks for a winner:

if winner is not None:
message.value = winner.text +

wins!"
Add this code

elif moves_taken() == 9:
message.value = "It's a draw"

Your code should resemble 06-tictactoe.py. When run, the game will now check whether nine
moves have been taken; if they have, it will change the message to report that the game was
a draw.

Chapter 6 Tic-tac-toe

tictactoe1.py / python 3 & DOWNLOAD

Imports --------------- magpi.cc/guizerocode
from guizero import App, Box, PushButton

Functions -------------
Variables -------------

App -------------mm----
app = App("Tic tac toe")

board = Box(app, layout="grid")
for x in range(3):
for y in range(3):
button = PushButton(board, text="", grid=[x, y], width=3)

app.display()

tictactoe2.py / python 3

Imports ---------------
from guizero import App, Box, PushButton

Functions -------------
def clear_board():
new_board = [[None, None, None], [None, None, None], [None,
None, None]]
for x in range(3):
for y in range(3):
button = PushButton(
board, text="", grid=[x, y], width=3)
new_board[x][y] = button
return new_board

Variables -------------

App --------mmmmemmmaea
app = App("Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

tictactoe3.py / python 3

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
new_board = [[None, None, None], [None, None, None], [None,
None, Nonel]]
for x in range(3):
for y in range(3):
button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
new_board[x][y] = button
return new_board

def choose_square(x, y):
board_squares[x][y].text = turn
board_squares[x][y].disable()

Variables -------------
tu r‘n = llxll

App ----=-----meemaaaan
app = App('Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn,

+ turn)

app.display()

Chapter 6 Tic-tac-toe 55

tictactoe4.py / python 3

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
new_board = [[None, None, None], [None, None, None], [None,
None, None]]
for x in range(3):
for y in range(3):
button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
new_board[x][y] = button
return new_board

def choose_square(x, y):
board_squares[x][y].text = turn
board_squares[x][y].disable()
toggle_player()

def toggle_player():
global turn

if turn == "X":
turn = "0"
else:
turn = X"
message.value = "It is your turn, " + turn

Variables -------------
turn = X"

App ------mmmmmmmmmmma-
app = App('Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn,

+ turn)

app.display()

56 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

tictactoe5.py / python 3

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
new_board = [[None, None, None], [None, None, None], [None,
None, Nonel]]
for x in range(3):
for y in range(3):
button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
new_board[x][y] = button
return new_board

def choose_square(x, y):
board_squares[x][y].text = turn
board_squares[x][y].disable()
toggle_player()
check_win()

def toggle_player():
global turn

if turn == "X":
turn = 0"
else:
turn = "X"
message.value = "It is your turn, " + turn

def check_win():
winner = None

Vertical lines
if (
board_squares[0][0].text == board_squares[0][1].text
board_squares[0][2].text
) and board_squares[0][2].text in ["Xx", "0"]:
winner = board_squares[0][0@]
elif (
board_squares[1][@].text == board_squares[1][1].text =
board_squares[1][2].text
) and board_squares[1][2].text in ["Xx", "0"]:
winner = board_squares[1][0]
elif (
board_squares[2][@].text == board_squares[2][1].text
board_squares[2][2].text
) and board_squares[2][2].text in ["X", "0"]:

Chapter 6 Tic-tac-toe 57

tictactoe5.py (cont.) / python 3

winner = board_squares[2][@]

Horizontal lines
elif (
board_squares[0][0].text == board_squares[1][0].text
board_squares[2][0].text
) and board_squares[2][@0].text in ["Xx", "0"]:
winner = board_squares[0][@]
elif (
board_squares[0][1].text == board_squares[1][1].text
board_squares[2][1].text
) and board_squares[2][1].text in ["x", "0"]:
winner = board_squares[0][1]
elif (
board_squares[0][2].text == board_squares[1][2].text
board_squares[2][2].text
) and board_squares[2][2].text in ["x", "0"]:
winner = board_squares[0][2]

Diagonals
elif (
board_squares[0][0].text == board_squares[1][1].text
board_squares[2][2].text
) and board_squares[2][2].text in ["x", "0"]:
winner = board_squares[0][0]
elif (
board_squares[2][@0].text == board_squares[1][1].text
board_squares[0][2].text
) and board_squares[0][2].text in ["x", "0"]:
winner = board_squares[0][2]

if winner is not None:
message.value = winner.text + " wins!”

Variables -------------
turn = "X

App -------mmmmmmmmmm o
app = App('Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

06-tictactoe.py / Python 3

Imports ---------------
from guizero import App, Box, PushButton, Text

Functions -------------
def clear_board():
new_board = [[None, None, None], [None, None, None], [None,
None, Nonel]]
for x in range(3):
for y in range(3):
button = PushButton(board, text="", grid=[x, y],
width=3, command=choose_square, args=[x,y])
new_board[x][y] = button
return new_board

def choose_square(x, y):
board_squares[x][y].text = turn
board_squares[x][y].disable()
toggle_player()
check_win()

def toggle_player():
global turn

if turn == "X":
turn = "0"
else:
turn = X"
message.value = "It is your turn, " + turn

def check_win():
winner = None

Vertical lines
if (
board_squares[0][0].text == board_squares[0][1].text ==
board_squares[0][2].text
) and board_squares[0][2].text in ["X", "0"]:
winner = board_squares[0][0]
elif (
board_squares[1][0].text == board_squares[1][1].text
board_squares[1][2].text
) and board_squares[1][2].text in ["Xx", "0"]:
winner = board_squares[1][0]
elif (
board_squares[2][0].text == board_squares[2][1].text
board_squares[2][2].text

Chapter 6 Tic-tac-toe 59

06-tictactoe.py (cont.) / python 3

) and board_squares[2][2].text in ["x", "0"]:
winner = board_squares[2][0]

Horizontal lines
elif (
board_squares[0][0].text == board_squares[1][0].text
board_squares[2][0].text
) and board_squares[2][0].text in ["Xx", "0"]:
winner = board_squares[0][@]
elif (
board_squares[0][1].text == board_squares[1][1].text ==
board_squares[2][1].text
) and board_squares[2][1].text in ["x", "0"]:
winner = board_squares[0][1]
elif (
board_squares[0][2].text == board_squares[1][2].text
board_squares[2][2].text
) and board_squares[2][2].text in ["x", "0"]:
winner = board_squares[0][2]

Diagonals
elif (
board_squares[0][0].text == board_squares[1][1].text
board_squares[2][2].text
) and board_squares[2][2].text in ["Xx", "0"]:
winner = board_squares[0][0]
elif (
board_squares[2][0].text == board_squares[1][1].text
board_squares[0][2].text
) and board_squares[0][2].text in ["x", "0"]:
winner = board_squares[0][2]

if winner is not None:

message.value = winner.text + " wins!”
elif moves_taken() == 9:
message.value = "It's a draw”

def moves_taken():
moves = 0
for row in board_squares:
for col in row:
if col.text == "X" or col.text == "0":
moves = moves + 1
return moves

60 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

06-tictactoe.py (cont.) / python 3

Variables -------------
turn = X"

App ------m-oe-oeeoe-
app = App('Tic tac toe")

board = Box(app, layout="grid")
board_squares = clear_board()
message = Text(app, text="It is your turn, " + turn)

app.display()

Chapter 6 Tic-tac-toe 61

Chapter 7

Destroy the Dots

SCORE:11

ou saw in the Tic-tac-toe game how to create a GUI on a grid layout in order to
present the player with a grid-like board. If you are making a game involving a larger
grid, there is a type of guizero widget called a Waffle which can instantly create a grid
for you, and is really useful for creating all kinds of fun games.
A Waffle was originally a grid of squares in early versions of guizero. This game is called
‘Destroy the dots’ and it came about because Martin thought it was a good idea to allow a
Waffle widget to contain a mixture of squares and dots.

Aim of the game

In this game, you need to destroy the dots before they destroy you! The board consists of a
grid of squares. The squares will gradually turn into dots. To destroy a dot, click on the dot and
it will turn back into a square. The aim of the game is to last as long as possible before being
overrun by dots (Figure 1).

62 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

[estroy fhe

Click the dots to destroy them

LICJLIC]
@ e @
LI
N EE.
..

Your score is 1

I Figure 1 Destroy the red dots before they take over the board

Set up the game
Let's start by making a guizero program which contains the instructions for the game and
a Waffle. By now you should be familiar with the layout of a standard guizero program with
sections for imports, functions, variables, and the app itself.

First, create an App and inside it add a Text widget for the instructions and a Waffle widget
for the board:

Imports ---------------
from guizero import App, Text, Waffle
app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app)

app.display()

If you run your program, you will see a small 3x3 grid of white squares. If you want to make
your grid bigger than this, you can add width and height properties to your Waffle:

Chapter 7 Destroy the Dots 63

board = Waffle(app, width=5, height=5)

Your code should now resemble destroy1.py (page 71).

Bring on the dots
Next you need to write a function to find a random square on the board and turn it into a dot.
Begin a new function in your functions section called add_dot():

def add_dot():

To choose a random square on the board, you need to be able to generate a random pair of
integers as co-ordinates. Add a line in your imports section to import the randint function
from the random library, which lets you generate a random integer.

from random import randint

Let's generate two variables, x and y, which you can use to reference a co-ordinate on the grid.
Inside your add_dot () function, begin your code like this:

X, y = randint(0,4), randint(e,4)

Notice that you have generated two random integers between 0 and 4, because earlier on
you set the width and height of the grid to be 5 - the rows and columns will be numbered
from 0. If you chose different values earlier on, you will need to adjust the values here to fit
the size of your grid. However, there is a better way to manage aspects like this (see ‘Using
constants’ box on page 70).

Dot or not?
Now that you know about constants, you can use the following function to generate a random
co-ordinate on the grid:

def add_dot():
X, y = randint(@,GRID_SIZE-1), randint(®@,GRID_SIZE-1)

At this point, you don’t know whether the randomly chosen co-ordinate is already a dot or
not. This might not seem to make any difference at the start of a game when the board is
mostly squares, but as the board gets filled up with dots, you need to make sure that the
space is actually a square, otherwise the game will be too easy. One way to achieve this is
to run a loop which checks whether the chosen square is already a dot, and if it is, chooses
another random square:

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Cestray e oots

Click the dots fo destray them

LI
LI

L]
LI
L]

@[]
LJLIL]

I Figure 2 Generating a random red dot

X, ¥ = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:
X, y = randint(0,GRID_SIZE-1), randint(0©,GRID_SIZE-1)

You might realise that this isn't a particularly efficient method of choosing a random square
that is not a dot, but it will do for what we need in this game.

As soon as this loop finishes, you can be sure that the randomly chosen x, y co-ordinate is
definitely a square. Let's convert it to a red dot — following (not inside) your while loop, add
the following lines:

board[x, y].dotty = True
board.set_pixel(x, y, "red")

Add a call to your new add_dot () function in the app section after you've created the board.
Your program should now resemble destroy2.py. When you run it, you should see a single
random red dot in the grid. If you run the program again, the dot will probably be in a different
random place (Figure 2).

Destroy the dot
So far there is only one dot - let's destroy it! Don't worry: you'll add more dots to destroy later
on, but once you can destroy one, you can destroy them all!

Make a new function in your functions section with a really satisfying name - destroy_dot
- and give it two parameters, x and y.

def destroy dot(x, y):

Chapter 7 Destroy the Dots

65

This function will check whether the co-ordinate x,y is a dot (rather than a square). You can
do this using the same code as the code to create a dot — the code board[x, y].dotty will
return True if that coordinate is a dot, and False if it is a square.

if board[x,y].dotty == True:

If the co-ordinate is a dot, change it to a square by setting its dotty property to False, and also
change its colour back to white:

if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")

This function needs to be triggered whenever the board is clicked. Find the line of code you
already have which creates the board, and add a command like this:

board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

This will call the destroy_dot function whenever a space on the board is clicked.

Note that a Waffle widget will automatically pass two parameters to any command
function; these will always be the x and y co-ordinates of the pixel that was clicked on to
trigger the command.

Your code should now look like destroy3.py. Test your program by running it and clicking on
the dot. You should see the dot turn back into a white square. If you click on a square that is
not a dot, nothing should happen.

More dots!

Now it's time to actually make the game a challenge, by adding continually spawning dots.

Let's start off by adding a new random dot every second. To do this, you need to schedule a

call to the add_dot function every second using a built-in feature of guizero called after.
In your app section, remove the call to add_dot () and replace it with a new line of code:

board.after (1000, add_dot)

This line of code means ‘after 1000 milliseconds (1 second), call the function add_dot'.

If you run the program now, you'll still get a single dot, but it will appear on the grid after a
delay of 1 second.

Here's the clever bit. Find your add_dot function and add the same line of code to it, at the
end of the function.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Click the dots to destroy them

| 9@ |
LOILIL I
L@
LU
@ ILILILI

IO Figure 3 Every second, a new dot will appear

This will schedule a new call to add_dot every time a new dot finishes being added. The
next dot is scheduled to appear in 1 second as well, so if you run the program you should see a
new dot appearing on the grid every second (Figure 3).

Try running your program, which should now look like destroy4.py. Since you already wrote
the method to destroy a dot, clicking on any dot should remove it. However, if you play the
game for a while you will notice it is pretty easy to keep up with the pace of one dot every
second and it is almost impossible to lose the game.

You still need to add two things — a score to keep track of how many dots you have
destroyed, and a way of making the game get more difficult so that it becomes a challenge.

Add a score
Adding a score is pretty straightforward and takes three steps:

- Add a variable to keep track of the score; the variable should start at 0.
Display a message on the GUI with the current score.

+ Any time the destroy_dot function is called and a dot is destroyed, add 1 to score and
update the message display.

Try to add the code yourself using what you have already learnt.

Hint: To update the score variable from the destroy_dot function, you will need to declare
it a global.

Hint: If you get an error saying that the variable score is referenced before assignment, make
sure your variables section comes before your functions section in your program.

The solution is shown overleaf if you are stuck...

Chapter 7 Destroy the Dots

67

Solution: add a score
First, add a variable in your variables section

score = 0@
Next, add a new Text widget in the app section to display the score:

score_display = Text(app, text="Your score is " + str(score))
Finally, add 1 to the score every time a dot is destroyed:

def destroy_dot(x,y):

Declare score global
global score

This code already exists

if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")

Add 1 to score and display it on the GUI
score += 1
score_display.value = "Your score is " + str(score)

Your code (without the optional comments) should now resemble destroy5.py. Test your
game and you should see your score go up by 1 every time you click on a dot.

Put the player under pressure
Now that you can track the player's score, you can use it to put the player under pressure and
speed up the spawn of dots if they are doing well.

Remember that you used an after call inside the add_dot function to schedule another dot
in 1000 milliseconds (or 1 second)? Go back and find that line — you're going to change it a bit.
First, create a variable speed and set it to 1000. Then, instead of scheduling a call to add a
dot after 1000 ms, schedule it to add a dot after speed milliseconds. This will have absolutely
no effect on the game... yet. You are still scheduling the next call after 1000 ms, but that figure

is now coming from the variable speed instead of being hard-coded as a magic number.

speed = 1000
board.after(speed, add_dot)

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Now here's how you can ramp up the pressure. Between these two lines of code, you can add
some code to set the speed of dots depending on the current score. Here is an example:

speed = 1000
if score > 10:
speed = 500
elif score > 20:
speed = 400
elif score > 30:
speed = 200
board.after(speed, add_dot)

Here, you can see that if the player has got more than 10 points, the new dots will appear every
500ms, if they have more than 20 points a dot will appear every 400ms, and so on. This makes
the game much harder the more points you have. Save your code — destroy6.py — and test

the game to see the difference. You can alter the numbers or add more elif conditions if you
want to increase the difficulty even further.

Game over
All that remains is to figure out when the player has lost the game; this happens when every
square has turned into a red dot.

Remember that when you made Tic-tac-toe, you used nested loops to check whether all
squares were filled and the game was a draw? You can use the same method here too, to loop
through every square on the grid and check if it is a red dot. In your add_dot function, just before
the call to after, add some code for a nested loop to loop through all squares on the board:

all_red = True
for x in range(GRID_SIZE):
for y in range(GRID_SIZE):

The first line begins by assuming that all squares are red. The nested loop will provide the
coordinates of every square on the grid in turn, as the values x and y so that you can check
whether this is true.

Add some code inside the second loop to find out whether the current pixel is red, and if it is
not, change the all_red variable to False.

all_red = True
for x in range(GRID_SIZE):
for y in range(GRID_SIZE):
if board[x,y].color != "red":
all_red = False

Chapter 7 Destroy the Dots

69

After both loops end (make sure you unindent the following code), check whether the grid was

all red dots. If it is, the player has lost so display a message:

if all_red:
score_display.value = "You lost! Score: " + str(score)

If the player hasn't lost, the game should continue. Add an else: and inside it, indent the
after method you already have, as we only want to add a new dot if the player has not lost:

else:
board.after(speed, add_dot)

Be careful to indent the after line you already have here rather than adding another one, or
your game will start behaving strangely and generate multiple dots per second!
Your final code should resemble 07-destroy-the-dots.py. Enjoy the game.

USING CONSTANTS

Setting the height and width of your Waffle to 5 is known as using a ‘magic number’ in a program,
because the specific number is hard-coded into the program. If you want to change the size of the
grid, you will need to find everywhere in the program this number appears and change it, which might

be messy.

Better programming practice would be to define a constant in your variables section called
GRID_SIZE and set it equal to 5:

GRID_SIZE = 5

Then, instead of defining your Waffle's dimensions with a magic number 5, you can put:
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE)

If you decide to change the size of the grid, you can just change the value of this constant.

Thinking about this type of thing at the time you write the program will help you to avoid headaches

later if you decide to change it.

© Canyou add a reset button which allows the player to begin a new game without having to

rerun the program?

© Can you put even more pressure on the player by calculating how many red dots are on the

board, and increasing the speed in proportion to the number of red dots?

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

destroy1.py / python 3 § DOWNLOAD

Imports --------------- magpi.cc/guizerocode

from guizero import App, Text, Waffle

Variables -------------

Functions -------------

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=5, height=5)

app.display()

destroy2.py / python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5

Functions -----------=--

def add_dot():
X, y = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:
X, y = randint(@,GRID_SIZE-1), randint(©,GRID_SIZE-1)
board[x, y].dotty = True

Chapter 7 Destroy the Dots

71

destroy2.py (cont.) 7 python 3

board.set_pixel(x, y, "red")

app = App("Destroy the dots™)

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=5, height=5)
add_dot()

app.display()

destroy3.py / Python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5

Functions -------------

def add_dot():
X, Yy = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:
X, y = randint(@,GRID_SIZE-1), randint(©,GRID_SIZE-1)
board[x, y].dotty = True
board.set_pixel(x, y, "red")

def destroy dot(x, y):
if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

destroy3.py (cont.) 7 python 3

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

add_dot()

app.display()

destroy4.py / python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------
GRID_SIZE = 5
Functions -------------

def add_dot():
X, y = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:
X, y = randint(@,GRID_SIZE-1), randint(©,GRID_SIZE-1)
board[x, y].dotty = True
board.set_pixel(x, y, "red")
board.after(1000, add_dot)

def destroy_dot(x,y):
if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")

Chapter 7 Destroy the Dots 73

destroy4.py (cont.) / python 3

app = App("Destroy the dots™)

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

board.after (1000, add_dot)

app.display()

destroy5.py / python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = 0

Functions ------=-------

def add_dot():
X, y = randint(o@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:
X, y = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
board[x, y].dotty = True
board.set_pixel(x, y, "red")
board.after (1000, add_dot)

def destroy_dot(x,y):
global score
if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")
score += 1
score_display.value = "Your score is

+ str(score)

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

destroy5.py (cont.) 7 Python 3

app = App("Destroy the dots™)

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

board.after (1000, add_dot)

score_display = Text(app, text="Your score is

+ str(score))

app.display()

destroy6.py / python 3

Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = O

Functions -------------

def add_dot():
X, Yy = randint(@,GRID_SIZE-1), randint(©,GRID_SIZE-1)
while board[x, y].dotty == True:
X, Yy = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
board[x, y].dotty = True
board.set_pixel(x, y, "red")

speed = 1000
if score > 10:

speed = 500
elif score > 20:
speed = 400

elif score > 30:

Chapter 7 Destroy the Dots 75

destroy6.py (cont.) 7 python 3

speed = 200
board.after(speed, add_dot)

def destroy_dot(x,y):
global score
if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")
score += 1
score_display.value = "Your score is

+ str(score)

app = App("Destroy the dots™)

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

board.after (1000, add_dot)

score_display = Text(app, text="Your score is

+ str(score))

app.display()
07-destroy-the-dots.py / python 3
Imports ---------------

from guizero import App, Text, Waffle
from random import randint

Variables -------------

GRID_SIZE = 5
score = 0

Functions -------------
def add_dot():

X, y = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
while board[x, y].dotty == True:

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

07-destroy-the-dots.py (cont.) / python 3

X, Yy = randint(@,GRID_SIZE-1), randint(@,GRID_SIZE-1)
board[x, y].dotty = True
board.set_pixel(x, y, "red")

speed = 1000

if score > 10:
speed = 500

elif score > 20:
speed = 400

elif score > 30:
speed = 200

all_red = True
for x in range(GRID_SIZE):

for y in range(GRID_SIZE):

if board[x,y].color != "red":
all_red = False

if all_red:

score_display.value = "You lost! Score:
else:

board.after(speed, add_dot)

+ str(score)

def destroy_dot(x,y):
global score
if board[x,y].dotty == True:
board[x,y].dotty = False
board.set_pixel(x, y, "white")
score += 1
score_display.value = "Your score is

+ str(score)

app = App("Destroy the dots")

instructions = Text(app, text="Click the dots to destroy them")
board = Waffle(app, width=GRID_SIZE, height=GRID_SIZE,
command=destroy_dot)

board.after (1000, add_dot)

score_display = Text(app, text="Your score is

+ str(score))

app.display()

Chapter 7 Destroy the Dots 77

Chapter 8

Flood It

|

5 MOVES
REMAINING

f lood It’ is a game where the aim is to flood the board with all squares the same
colour. Beginning with the top-left square, players choose a colour to flood into. It
offers a slightly more complex Waffle-based game.

Aim of the game
In this example (Figure 1), the top-left square is yellow. The player could either choose to flood
into the single blue square to the right, or to flood into the red square underneath.

Flooding the red square would be a
better move because all adjoining red
squares would also be flooded, and the
player is only allowed a limited amount of
moves before the game ends.

O Figure 1 Flood the squares with one colour

78 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Set up
Download (from magpi.cc/floodit) and open the starter file, floodit_starter.py. Save it in a
sensible place.

In the variables section, give the variables some values:

+ colours — alist of six colours as strings. These can either be common colour names or
hex colours. The colour names "white", "black’, "red", "green’, "blue”, "cyan”, "yellow", and
"magenta" will always be available.

+ board_size - the width/height of the board as an integer; we chose 14. The board is
always a square.

+ moves_limit - how many moves the player is allowed before they lose, as an integer; we

chose 25.

In the app section, create an App widget and give it a title.

app = App("Flood it")
app.display()

Running this will result in a standard labelled window (Figure 2).

Flood it

O Figure 2 The usual labelled window

Create the board
The board is a grid of squares, each containing a randomly selected colour from the list you
created earlier.

Inside the app, add a Waffle widget. This will create a grid which will be the board.

board = Waffle(app)

Chapter 8 Flood it 79

80

Flood it

L]
L]
L]

O Figure 3 The grid squares are too small

Run your program and you will see that the grid is a bit too small (Figure 3).
Add to the line of code you just wrote to specify parameters for the width and height of the
Waffle, and make the padding between the grid squares zero.

board = Waffle(app, width=board_size, height=board_size, pad=90)

That's better (Figure 4).

Flaad it

O Figure 4 A grid of the correct board size, with no padding

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Flaod it

Palette

IO Figure 5 You'll need a palette for the player to choose a colour

Create the palette

The palette shows the player which colours they can click on to flood the board. They will click

on these colours to play the game. The palette from the finished game is shown in Figure 5.
On the line after you created the board, create another Waffle, but this time it should be

called palette.

palette = Waffle(app)

Remember when you added the parameters to the board Waffle in the previous step? This
time, add these parameters to the palette Waffle with each one separated by a comma:

width = 6 (the number of colours we have)

height = 1
dotty = True (this makes the squares into circles)

Chapter 8 Flood it 81

O 0

O Figure 6 A blank palette

So, now you should have:

palette = Waffle(app, width=6, height=1, dotty=True)
Run the code to see a blank palette (Figure 6).
Colour in the board
The board should start off with each square as a randomly chosen colour from the colours list
you created earlier.

On the line below your palette, write a call to a function

fill_board()
Find the functions section in your program, and begin writing the code for this new function:

def fill_board():
You can write a nested loop to loop through every row and column in the board. Each pixel will
be coloured with a randomly chosen colour from the list. To colour in a pixel, you will use this
code, where the ? symbols will be replaced with the x, y co-ordinates of the pixel:

board.set_pixel(?, ?, random.choice(colours))

Try to write the code yourself using what you have learnt about nested loops in the previous
chapters - the solution is provided on page 83 if you get stuck.

Hint: Use the board_size variable to know how many times to loop.

When you run your code, you should see a colourful board. If you see a white board, double-
check that you put in the function call to fill_board() (Figure 7).

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

QOO0

I Figure 7 Each square of the board is coloured randomly
Here is one solution, but there are many ways you could do this:

def fill_board():
for x in range(board_size):
for y in range(board_size):
board.set_pixel(x, y, random.choice(colours))

An alternative solution which uses a more advanced feature called a list comprehension:

def fill board():
[board.set_pixel(x, y, random.choice(colours)) for y in
range(board_size) for x in range(board_size)]

Colour in the palette
Now that you have a colourful board, let's colour in the palette.
On the line below your fi11_board() code, write a call to a function:

init_palette()

Find the functions section in your program, and begin writing the code for this new function:

Chapter 8 Flood it 83

def init_palette():

The idea here is to loop through all of the colours in the list, assigning one to each of the
circles in the palette. You can use the same set_pixel method as you used for the board to
change the colour of the circles in the palette.

Have a go at writing the code yourself. If you get stuck, some possible solutions are shown
in the ‘'How many ways can you colour the palette’ box.

Hint: All of the circles in the palette are in row 0 of the Waffle.

HOW MANY WAYS CAN YOU COLOUR THE PALETTE?

Here is a solution which uses a loop and a variable to keep track of which column you are colouring in:

def init_palette():
column = @
for colour in colours:
palette.set_pixel(column, @, colour)
column += 1

Here is a similar solution which uses a range inside the for loop instead of a counter variable:

def init_palette():
for x in range(len(colours)):
palette.set_pixel(x, @, colours[x])

Here is a different solution which uses the index function colours.index(colour). This code
says ‘In the colours list, find me the position in the list of colour’. So, for example if your list was
["green", "blue", "red"] then the index of green would be 0, the index of blue would be 1,

etc., remembering that we count starting from zero.

def init_palette():
for colour in colours:

palette.set_pixel(colours.index(colour), @, colour)

You can use any of these solutions, or you may have come up with a different way by yourself. None of

them is the 'right answer": there are often many different ways of coding a solution.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Start the flood
When the player clicks on a colour in the palette, the board should flood with that colour,
beginning with the top-left square.

In the functions section, create a new function called start_flood in exactly the same way
as you did for the last two functions. This function needs to take two parameters which will be
the x, y co-ordinates of the square that was clicked on. Add these between the brackets so that
you end up with your code looking like this:

def start_flood(x, y):
Add a line of code (indented) to the function get the name of the colour that was clicked on:

flood_colour = palette.get_pixel(x,y)
This will be the colour to flood the board with.

Add a line of code to get the current colour of the starting pixel - this is always the pixel in

the top left of the board, at co-ordinates 0, 0.

target = board.get_pixel(0,0)
Now call the flood function, which has already been written for you in the starter file. This
function starts at 0,0 and floods all the pixels connected to the top-left pixel that are the same
colour with the flood_colour.

flood(@, @, target, flood_colour)

This function should run whenever someone clicks on a colour in the palette, so find the line of
code where you created the palette.

palette = Waffle(app, width=6, height=1, dotty=True)
Add another parameter which is a command. When a circle on the palette is clicked, this

command will be executed. The command is the function start_flood, so your code should
now look like this:

palette = Waffle(app, width=6, height=1, dotty=True,
command=start_flood)

Chapter 8 Flood it

85

Test out your code by clicking on the
circles on the palette.

The top-left square is green (Figure 8).
If you click red on the palette, the top-left
square will turn red and connect to the
other red squares (Figure 9).

Now there are four red squares
connected to the top-left square. Let's
click green to connect up the green
squares underneath (Figure 10).

Now there is a large chain of green
squares. Continue the game by pressing
different colours in the palette. The aim
is to eventually get all of the squares the
same colour.

Winning the game

At the moment, if the player manages to
get all of the squares in the grid the same
colour, nothing happens. The player is
also allowed an infinite number of turns,
as the number of moves they have taken
is not tracked.

First let's add a piece of text to the GUI
to display whether the player has won or
lost. The text will start off blank.

Underneath the code for the palette,
add a Text widget called win_text.

win_text = Text(app)

Flood it
|
H B
H B
|

O Figure 8 Here, the top-left square is green
Flood it

O Figure 10 Click pink for a chain of pink

In the variables section, add another variable called moves_taken and set it to 0.

Now create a function called win_check to check after each move whether the player

has won.

First, you need to specify that you would like to be allowed to change the value of the global

variable moves_taken.

global moves_taken

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Then add 1 to the moves_taken variable — each time this function is called, we will add one
more move.

moves_taken += 1

Check if the moves_taken is less than the moves_limit or not:
if moves_taken < moves_limit:
else:

If the moves_taken is not within the limit, this means the playher has run out of moves, so
update the text to say that they lost:

if moves_taken < moves_limit:

else:
win_text.value = "You lost :("

If the number of moves taken is less than the limit, check whether all of the squares are the
same colour by calling the function already written for you in the starter file. Make sure the
following code is indented below the first if statement:

if all_squares_are_the_same():
win_text.value = "You win!"

The completed piece of code should look like this:

def win_check():
moves_taken += 1
if moves_taken <= moves_limit:
if all_squares_are_the_same():
win_text.value = "You win!"
else:
win_text.value = "You lost :("

Finally, you must call the win_check function whenever a square is clicked on. The easiest
way to do this is to add the function call at the end of the start_flood function.
Now it's time to test the game. An example code listing is shown in 08-floodit.py, overleaf.

Chapter 8 Flood it

Test your game

You can test whether the game works by playing it; however, it might take a long time to

test whether you can win! An easier way to check is to change the board_size variable to
something small such as 5, and then play the game on a much smaller grid to see whether you
can win.

You can easily test whether the game causes you to lose properly by clicking on the same
colour 25 times!

© If the player wins or the player loses, disable the palette to prevent them clicking on it any more

and causing an error. The code to disable the palette is palette.disable().
© Display how many moves are left as a piece of text on the GUI.
© Add a button which displays instructions for how to play.

© Add areset button to let the player start a new game. Don't forget, you will also have to reset the
colours on the board, reset the moves_taken variable, and re-enable the palette if you disabled
it (palette.enable()).

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

08-floodit.py / python 3 § DOWNLOAD

- magpi.cc/guizerocode

from guizero import App, Waffle, Text, PushButton, info
import random

colours = ["red", "blue", "green", "yellow", "magenta", "purple"]
board_size = 14
moves_limit = 25
moves_taken = 0

Recursively floods adjacent squares
def flood(x, y, target, replacement):
Algorithm from https://en.wikipedia.org/wiki/Flood_fill
if target == replacement:
return False
if board.get_pixel(x, y) != target:
return False
board.set_pixel(x, y, replacement)
if y+1 <= board_size-1: # South
flood(x, y+1, target, replacement)
if y-1 >= 0: # North
flood(x, y-1, target, replacement)
if x+1 <= board_size-1: # East
flood(x+1, y, target, replacement)
if x-1 >= 0: # West
flood(x-1, y, target, replacement)

Check whether all squares are the same
def all_squares_are_the_same():
squares = board.get_all()
if all(colour == squares[@] for colour in squares):
return True

Chapter 8 Flood it

89

08-floodit.py (cont.) / python 3

else:
return False

def win_check():
global moves_taken
moves_taken += 1
if moves_taken <= moves_limit:
if all_squares_are_the_same():
win_text.value = "You win!"
else:
win_text.value = "You lost :("

def fill_board():
for x in range(board_size):
for y in range(board_size):
board.set_pixel(x, y, random.choice(colours))

def init_palette():
for colour in colours:
palette.set_pixel(colours.index(colour), 0, colour)

def start_flood(x, y):
flood_colour = palette.get_pixel(x,y)
target = board.get_pixel(0,0)
flood(@, @, target, flood_colour)
win_check()

app = App("Flood it")

board = Waffle(app, width=board_size, height=board_size, pad=0)
palette = Waffle(app, width=6, height=1, dotty=True,
command=start_flood)

win_text = Text(app)

fill_board()
init_palette()

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 8 Flood it 91

92

Chapter 9

Emoji Match

ou are going to build an emoji picture-matching game (Figure 1). The object of the
game is to spot the one emoji that appears in two different sets. You get a point for
each correct match and lose a point for an incorrect match.

Loading emajis
To create the game, you will need emojis. You can use the emojis created for Twitter
(twemoji.twitter.com). Download the emojis.zip file from magpi.cc/guizeroemojis, open the
zip file, and copy the emojis folder to the folder where you save your code.

The game will need to choose nine emojis at random and arrange them into a grid. A simple
way to do this is to put all of the emojis into a list and randomly shuffle them.

The following code creates a shuffled list of items, each in the form path/emoji_file_name.

Create a new program with the usual commented lines for different sections (Imports,
Variables, Functions, App). Under imports, add:

import os
from random import shuffle

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Then, under variables, enter this code which creates a shuffled list of emojis, each in the
form path/emoji_file_name.

set the path to the emoji folder on your computer

emojis_dir = "emojis"

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]

shuffle(emojis)

The emojis_dir variable is the path of
the emojis on your computer; it will tell the
code that loads the emojis where to
find them.

Test your program. Try printing
the emojis list to the screen with
print(emojis). You should see a long
list of file names. The list should be in a
different order each time you run it.

Displaying the emojis
Next, the code needs to create two 3x3
grids of Picture and PushButton widgets

which will show the emojis.
Modify your program to create a guizero IO Figure 1 The finished game
app and a Box to hold the picture widgets
using a "grid" layout. In the imports section, add this line to import the required widgets:
from guizero import App, Box
In the app section, add the following code:
app = App("emoji match")
pictures_box = Box(app, layout="grid")
The Box widget is really useful for laying out your GUL. It's an invisible area of your GUI

where you can group widgets together. A Box can have its own layout, size, and bg

Chapter 9 Emoji Match 93

(background). They can also be hidden or shown, meaning you can easily make a collection

of widgets invisible.
If you wish to see the Box, you can add a border by setting the parameter to True.

pictures_box = Box(app, layout="grid", border=True)
Now, add the Picture widget to your imports:
from guizero import App, Box, Picture
In the app section, add in the code to create the Picture widgets and add them to a list.
pictures = []
for x in range(0,3):
for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])
pictures.append(picture)
To assign co-ordinates to each Picture widget, two for loops are used. They both run through
the range 0—-2; one assigns its value to the variable x and the other to the variable y. The grid
position of each widget is set using the x and y values. The widgets are appended to a list so
they can be referenced later in the game.
Do the same for PushButton widgets to create the second 3x3 grid. First, add the widget to
your imports:
from guizero import App, Box, Picture, PushButton
In the app section, add lines so it looks like this:

app = App(“"emoji match")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
for y in range(0,3):

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

picture = Picture(pictures_box, grid=[x,y])
pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

In the functions section, create a function to set up each round of the game.

def setup_round():
for picture in pictures:
picture.image = emojis.pop()

for button in buttons:
button.image = emojis.pop()

To assign each picture and button widget an emoji, the image property is set to an item
from the emojis list. Emojis are selected using pop(), which chooses the last item in a list
and then removes it from the list. I've used this function because it will prevent any emoji
appearing in the game more than once.

At the bottom of your program, call the setup_round function and display the app.

setup_round()

app.display()

Your program should now resemble
emoji1.py (page 99). Test it and you
should see two grids of nine emojis.

Matching emajis

At the moment, all of the emojis in your
app will be different (Figure 2). In the next
step, you will pick another emoji to match,
and update one picture and one button so

they have the same matching emoji.

Add randint to your random import line. B Figure 2 No matching emojis
This is used to obtain a number from 0 to 8
for each picture and button.

from random import shuffle, randint

Chapter 9 Emoji Match

95

Then add this code (indented) to the bottom of the setup_round function to pop another

emoji from the list and set it to be the image of a random picture and button.
matched_emoji = emojis.pop()

random_picture = randint(o,8)
pictures[random_picture].image = matched_emoji

random_button = randint(o,8)
buttons[random_button].image = matched_emoji

Your code should now look like emoji2.py. Run your program now; one of the emojis should
match. Look carefully — the matching emoji can be hard to spot.

Check the guess
Each time one of the PushButtons is pressed, it will need to check if this is the matching emoji
and put the result ‘correct’ or ‘incorrect’ on the screen. After the player’s guess, a new round
will be set up and different set of emojis displayed.
Your app will need a Text widget display the result. Add it to your imports:
from guizero import App, Box, Picture, PushButton, Text
Add this line in your app section:

result = Text(app)

Create a new function which will be called when one of the emoji buttons is pressed. It will
display ‘correct’ or ‘incorrect’ and call setup_round to create the next set of emojis.

def match_emoji(matched):
if matched:

result.value = "correct"
else:
result.value = "incorrect"”

setup_round()

The incorrect emoji buttons will pass False to the match_emoji function; the matching emoji
will pass True.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Update the setup_round function so that all the ‘incorrect’ buttons call the
match_emoji function.

for button in buttons:
button.image = emojis.pop()
button.update_command(match_emoji, args=[False])

The update_command method sets the function which will be called when the button is
pressed. The args list [False] will be used as the parameters to the match_emoji function.

Finally, update the command for the matching button so it calls match_emo3ji, but this time
passes True as the argument.

buttons[random_button].update_command(match_emoji, [True])

Your code should now resemble emoji3.py. Play the game. In each round there will be a
matching emoji — press the matching picture button. Did you get it right?

Adding a score and timer
At the moment, the game continues forever (or until you run out of emojis in the list). Add a
score and a timer which counts down to the end of the game to give a challenge.

In the app section, create two Text widgets to show the score and the timer.

score
timer

Text(app, text="0")
Text(app, text="30")

The timer is set to "3@", which will be the number of seconds in each round.
Modify the match_emo3ji function to either add or subtract 1 to/from the player’s score.

def match_emoji(matched):
if matched:

result.value = "correct"

score.value = int(score.value) + 1
else:

result.value = "incorrect”

score.value = int(score.value) - 1
To create the timer, you will use a feature of guizero which allows you to ask the application to

continuously call a function every 1 second.
Create a function which will reduce the value of the timer by 1.

Chapter 9 Emoji Match

97

def reduce_time():
timer.value = int(timer.value) - 1

Before the app is displayed, use the app.repeat () function to call the reduce_time function
every second (1000 milliseconds).

app.repeat (1000, reduce_time)

app.display()

Running your game now, you will notice that the timer counts down from 30. Unfortunately, it
will continue counting down past 0 and never stop.

Update the reduce_time function to check if the timer is less than zero and then stop
the game.

def reduce_time():

timer.value = int(timer.value) - 1

is it game over?

if int(timer.value) < O:
result.value = "Game over! Score =
hide the game
pictures_box.hide()
buttons_box.hide()
timer.hide()
score.hide()

+ score.value

When the timer is less than 0, the message
‘game over' is displayed and the game's
widgets are hidden so the user can no
longer play.

See emoji4.py to get an idea of how your
code should now look. Run it and play the
emoji match game. Challenge a friend or
family member to a game.

You may want to put the score and timer
widgets into a Box so they can be laid
out better (Figure 3) — see the complete
09-emoji-match.py listing for how to do this.

O Figure 3 With box for score and timer

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

At the moment, the only way to start a new round of the game is restart the program. Can
you change the code to introduce a button to start a new round?

USING OTHER IMAGES

The emoji match game uses picture buttons to allow the user to pick which emoji matches. You can

make any PushButton widget into a picture button by setting the image parameter; for example:

button = PushButton(app, image="my_picture.gif")
The button will scale to fit the size of your image. The type of image you can use is determined by your
operating system and how you installed guizero, although any setup will support GIF images. To find

the image file types supported by your setup, you can run:

from guizero import system_config
print(system_config.supported_image_types)

You can find out more about image support in guizero at lawsie.github.io/guizero/images.

emoji1.py / Python 3 ¥ DOWNLOAD

3 magpi.cc/guizerocode

import os
from random import shuffle
from guizero import App, Box, Picture, PushButton

set the path to the emoji folder on your computer
emojis_dir = "emojis”

Chapter 9 Emoji Match

100

emoji1.py (cont.) / Python 3

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]
shuffle(emojis)

def setup_round():
for picture in pictures:
picture.image = emojis.pop()

for button in buttons:
button.image = emojis.pop()

app = App(“emoiji match™)

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(©0,3):
for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])
pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

setup_round()

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

emoji2.py / Python 3

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton

set the path to the emoji folder on your computer

emojis_dir = "emojis”

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]

shuffle(emojis)

def setup_round():
for picture in pictures:
picture.image = emojis.pop()

for button in buttons:
button.image = emojis.pop()

matched_emoji = emojis.pop()

random_picture = randint(0,8)
pictures[random_picture].image = matched_emoji

random_button = randint(9,8)
buttons[random_button].image = matched_emoji

Chapter 9 Emoji Match 101

emoji2.py (cont.) / Python 3

app = App(‘emoji match™)

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])
pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

setup_round()

app.display()

emoji3.py / Python 3

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

set the path to the emoji folder on your computer

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

emoji3.py (cont.) / Python 3

emojis_dir = "emojis”

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]

shuffle(emojis)

H mmmmmmmmmmmmmmmmmmmmmm————————

Functions

mmmmmmmmmmmmmmmmmmmmmm————————

def setup_round():
for picture in pictures:
picture.image = emojis.pop()

for button in buttons:
button.image = emojis.pop()
button.update_command(match_emoji, args=[False])

matched_emoji = emojis.pop()

random_picture = randint(@,8)
pictures[random_picture].image = matched_emoji

random_button = randint(0,8)
buttons[random_button].image = matched_emoji

buttons[random_button].update_command(match_emoji, [True])

def match_emoji(matched):
if matched:

result.value = "correct”
else:
result.value = "incorrect”

setup_round()

Chapter 9 Emoji Match

103

emoji3.py (cont.) / Python 3

app = App(‘emoji match™)

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(90,3):
for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])

pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

result = Text(app)

setup_round()

app.display()

emojik.py / Python 3

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

set the path to the emoji folder on your computer
emojis_dir = "emojis”
emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

emoji4.py (cont.) / Python 3

dir)]
shuffle(emojis)
mmmmmmmmmmmmmmmmmmmm—m————————
Functions
H mmmmmmmmmmmmmmmmmmmmmm————————
def setup_round():
for picture in pictures:
picture.image = emojis.pop()
for button in buttons:
button.image = emojis.pop()
button.update_command(match_emoji, args=[False])
matched_emoji = emojis.pop()
random_picture = randint(@,8)
pictures[random_picture].image = matched_emoji
random_button = randint(9,8)
buttons[random_button].image = matched_emoji
buttons[random_button].update_command(match_emoji, [True])
def match_emoji(matched):
if matched:
result.value = "correct”
score.value = int(score.value) + 1
else:
result.value = "incorrect”
score.value = int(score.value) - 1
setup_round()
def reduce_time():

timer.value = int(timer.value) - 1
is it game over?
if int(timer.value) < 0:
result.value = "Game over! Score = " + score.value

Chapter 9 Emoji Match

105

106

emojik.py (cont.) / Python 3

hide the game
pictures_box.hide()
buttons_box.hide()
timer.hide()
score.hide()

app = App(‘emoji match™)

score
timer

Text(app, text="0")
Text(app, text="30")

pictures_box = Box(app, layout="grid")
buttons_box = Box(app, layout="grid")

pictures = []
buttons = []

for x in range(0,3):
for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])

pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

result = Text(app)
setup_round()

app.repeat(1000, reduce_time)

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

09-emoji-match.py / python 3

import os
from random import shuffle, randint
from guizero import App, Box, Picture, PushButton, Text

set the path to the emoji folder on your computer

emojis_dir = "emojis”

emojis = [os.path.join(emojis_dir, f) for f in os.listdir(emojis_
dir)]

shuffle(emojis)

-

Functions

-

def setup_round():
for picture in pictures:
picture.image = emojis.pop()

for button in buttons:
button.image = emojis.pop()
button.update_command(match_emoji, args=[False])

matched_emoji = emojis.pop()

random_picture = randint(@,8)
pictures[random_picture].image = matched_emoji

random_button = randint(0,8)
buttons[random_button].image = matched_emoji

buttons[random_button].update_command(match_emoji, [True])

Chapter 9 Emoji Match 107

09-emoji-match.py (cont.) 7 Python 3

def match_emoji(matched):
if matched:

result.value = "correct”

score.value = int(score.value) + 1
else:

result.value = "incorrect”

score.value = int(score.value) - 1
setup_round()

def reduce_time():
timer.value = int(timer.value) - 1
is it game over?
if int(timer.value) < 0:
result.value = "Game over! Score =
hide the game
game_box.hide()

+ score.value

app = App(“'emoji match™)
game_box = Box(app, align="top")

top_box = Box(game_box, align="top", width="f11")
Text(top_box, align="left", text="Score ")

score = Text(top_box, text="4", align="left")
timer = Text(top_box, text="30", align="right")
Text(top_box, text="Time", align="right")

pictures_box = Box(game_box, layout="grid")
buttons_box = Box(game_box, layout="grid")

pictures = []
buttons = []

for x in range(0,3):

108 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

09-emoji-match.py (cont.) / python 3

for y in range(0,3):
picture = Picture(pictures_box, grid=[x,y])
pictures.append(picture)

button = PushButton(buttons_box, grid=[x,y])
buttons.append(button)

result = Text(app)
setup_round()

app.repeat(1000, reduce_time)

app.display()

Chapter 9 Emoji Match 109

Chapter 10

ou are going to build a simple

application which will allow you e

to paint using lines and shapes
(Figure 1). You will create your paint

application in four stages: i .

+ drawing dots which follow the mouse u

+ draw lines between the dots

+ adding colours and line width modifier
+ drawing shapes P ' ﬂ(

Note that you can style your application
anyway you want — it doesn't have to look like
this one. IO Figure 1 Our simple paint application

110 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Drawing dots
The first step is to create a simple application which will use the Drawing widget and the
when_mouse_dragged event to draw dots (or ovals on the screen).

In the imports section of your otherwise blank program, add the widgets:

from guizero import App, Drawing
Create a new function:

def draw(event):
painting.oval(
event.x - 1, event.y - 1,
event.x + 1, event.y + 1,
color="black")

Add this code to the app section:
app = App("Paint")
painting = Drawing(app, width="fill", height="fill")
painting.when_mouse_dragged = draw

app.display()

Your code should resemble paint1.py (page 116). The Drawing widget fills all the available space
on the window. When the mouse is dragged
across the drawing, the function draw is e
called which draws ovals on the painting.
The draw function is called each time an i P
event is raised. The event which contains the { i %
x and y position of the mouse is passed as a Ny, [T e 4
variable to the function. J o "Ill I
There is a problem, though. Unless you F
move your mouse very slowly, a series r = J
of dots is drawn by your program, not a L"
continuous line (Figure 2). It's not a very
good paintbrush! There are gaps between the
dots because an event is not raised for every
pixel the mouse crosses. IO Figure 2 Not a very good paintbrush

Chapter 10 Paint 111

Lines between the dots
To solve this problem, you are going to change the program to draw lines between the dots.
That way the line made will be continuous and be more like a pen or paintbrush.

You will need to use a when_left_button_pressed event to store the position of where
the line starts. Then draw a straight line between where the line starts and next position the

mouse was dragged too.
Create a new function which will be called when the mouse is pressed.

def start(event):
painting.last_event = event

Add this to the app section:
painting.when_left_button_pressed = start

The position of where the line starts is stored in the 1ast_event variable.
Modify the draw function to draw a line between where the line starts and where the mouse

has been dragged to.

def draw(event):
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color="black",
width=3

painting.last_event = event

By updating the last_event variable to be the current position of the mouse, the next time
the mouse is dragged, it will draw another line between this point and the next. Your program
should look like paint2.py. Test it and make sure your paintbrush now works properly.

Change the line width and colour
You only have one colour and thickness for your paintbrush, which limits the drawing you can
create. Next, you will amend your GUI so you can pick different colours and line widths.

Add two widgets to the GUI capture a colour and width for the line.

from guizero import App, Drawing, Combo, Slider

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Add these line to the app section:

color = Combo(app, options=["black", "white", "red", "green", "blue"])
width = Slider(app, start=1, end=10)

You may also want to change the background colour of your painting to be different. Also, we
have used a Combo and a Slider, but you could choose different widgets.
Modify the draw function to use the colour and width values when painting the line.

painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color=color.value,
width=width.value

Test your code, which should be like paint3.py, and you can now select the colour and line width.

Drawing shapes
You are going to extend your paint application so you can draw filled rectangles. When the
mouse is pressed, the rectangle will appear and grow as the mouse is dragged across the
screen. When the mouse button is released, the rectangle will drawn onto the screen.

To do this, you will modify your program to continuously draw and delete rectangles until the
mouse button is released. Let's add a widget to your GUI so you can select whether to draw a
line or a rectangle. Add this to the app section:

shape = Combo(app, options=["line", "rectangle"])
Modify the draw function to only draw lines if the "1ine" option is selected.

if shape.value == "line":
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color=color.value,
width=width.value

Test your program to make sure that the line still works and nothing happens when

"rectangle" is selected.

Chapter 10 Paint

113

Create two new variables to keep track of the first event and the last shape drawn when the

mouse button is pressed.

def start(event):
painting.last_event = event
painting.first_event = event
painting.last_shape = None

These variables will be used when drawing and deleting the rectangle before the mouse button
is released.
Add this code to your draw function to draw a rectangle when the mouse is dragged.

if shape.value == "rectangle":

if painting.last_shape is not None:
painting.delete(painting.last_shape)

rectangle = painting.rectangle(
painting.first_event.x, painting.first_event.y,
event.x, event.y,
color=color.value

painting.last_shape = rectangle

The program will continually draw a rectangle, then delete it, then draw it again until you
release the button.

Your complete program should look similar to paint4.py. Have fun trying it out — what
pictures can you create?

ADD OVALS

When you first created the Paint application, you used ovals to draw dots across the
screen. Can you modify your program to draw ovals again, using a similar process to how
rectangles are drawn? Hint: see the 10-paint.py listing, which also styles up the tools and
aligns them neatly in a box.

The Drawing widget also supports drawing triangles and polygons. Take a look at the
documentation (lawsie.github.io/guizero/drawing) and see how you might use this
function to create other shapes.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CUSTOM EVENTS

To get your paint application to react to the mouse position, you have used custom events. The events
work very similar to the normal widget command parameter in that you set them to a function, which is

called when that event occurs.

When your function is called, a variable is passed which contains information about the event that
has occurred, such as the x and y co-ordinates of the mouse. Most widgets, including the App itself,

support the following events:

* when clicked - when_clicked

© when the left mouse button is pressed -~ when_left_button_pressed

© when the left mouse button is released — when_left_button_released

* when the right mouse button is pressed — when_right_button_pressed

* when the right mouse button is released — when_right_button_released
© when akey is pressed — when_key_pressed

© when akey is released — when_key_released

* when the mouse enters a widget — when_mouse_enters

© when the mouse leaves a widget - when_mouse_leaves

* when the mouse is dragged across a widget — when_mouse_dragged

These events can be used to make your GUIs more interactive.

Chapter 10 Paint

paint1.py / Python 3 § DOWNLOAD

simple paint app, just draw dots magpi.cc/guizerocode

def draw(event):
painting.oval(
event.x - 1, event.y - 1,
event.x + 1, event.y + 1,
color="black")

app = App('Paint™)
painting = Drawing(app, width="fil1", height="f11")

painting.when_mouse_dragged = draw

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint2.py / python 3

drawing lines by tracking when the mouse is clicked

def start(event):
painting.last_event = event

def draw(event):
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color="black",
width=3
)

painting.last_event = event

app = App("'Paint")
painting = Drawing(app, width="fi11", height="f11")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

Chapter 10 Paint 117

paint3.py / Python 3

widgets to set the color and width

def start(event):
painting.last_event = event

def draw(event):
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color=color.value,
width=width.value

painting.last_event = event

app = App('Paint™)

color = Combo(app, options=["black", "white", "red", "green",
"blue"])

width = Slider(app, start=1, end=10)

painting = Drawing(app, width="fil1", height="f11")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

paint4.py / Python 3

adding different drawing shapes

def start(event):
painting.last_event = event
painting.first_event = event
painting.last_shape = None

def draw(event):
if shape.value == "line":
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color=color.value,
width=width.value

)

if shape.value == "rectangle”:

if painting.last_shape is not None:
painting.delete(painting.last_shape)

rectangle = painting.rectangle(
painting.first_event.x, painting.first_event.y,
event.x, event.y,
color=color.value

)
painting.last_shape = rectangle

painting.last_event = event

Chapter 10 Paint 119

120

paint4.py (cont.) / Python 3

app = App('Paint™)

color = Combo(app, options=["black", "white", "red", "green",
"blue"])

width = Slider(app, start=1, end=10)

shape = Combo(app, options=["line", "rectangle"])

painting = Drawing(app, width="fil1", height="f11")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

10-paint.py / Python 3

styled up

def start(event):
painting.last_event = event
painting.first_event = event
painting.last_shape = None

def draw(event):
if shape.value == "line":
painting.line(
painting.last_event.x, painting.last_event.y,
event.x, event.y,
color=color.value,
width=width.value

)

else:
if painting.last_shape is not None:
painting.delete(painting.last_shape)

if shape.value == "rectangle”:

painting.last_shape = painting.rectangle(
painting.first_event.x, painting.first_event.y,
event.x, event.y,
color=color.value

)

if shape.value == "oval”:

painting.last_shape = painting.oval(
painting.first_event.x, painting.first_event.y,
event.x, event.y,
color=color.value

Chapter 10 Paint 121

10-paint.py (cont.) / python 3
)

painting.last_event = event

app = App('Paint™)
app.font = "impact”

tools = Box(app, align="top", width="fill", border=True)

Text(tools, text="Tool", align="left")
shape = Combo(tools, options=["line", "rectangle"”, "oval"],
align="1left")

Text(tools, text="Colour”, align="left")
color = Combo(tools, options=["black”, "white",
"blue"], align="left")

red", "green",
Text(tools, text="Width", align="left")

width = Slider(tools, start=1, end=10, align="left")

painting = Drawing(app, width="fil1", height="f11")

painting.when_left_button_pressed = start
painting.when_mouse_dragged = draw

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 10 Paint 123

124

Chapter 11

Stop-frame
Animation

his projects uses a Raspberry Pi Camera Module and guizero to make a stop-frame
animation application (Figure 1). To complete this project, you will need a Raspberry
Pi with an official Camera Module (or High Quality Camera). If you need help
connecting up the Camera Module, take a look at the ‘Getting started with the Camera Module’
guide at rpf.io/picamera.
You will need guizero installed with the optional ‘images’ functionality, which you can install
by running this command in the terminal:

pip3 install guizero[images]
If using the Thonny IDE, you may also need to switch to Regular Mode, go to Tools > Manager

packages, select guizero, click on the *.." button, check the box for ‘Upgrade dependencies’, and
click on Install.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

This project is broken down into stages:

1. Taking a picture with the camera and
displaying it on a GUI

2. Taking multiple pictures and saving
them to a GIF file

3. Allowing the user to change the GIF
Tidying up the GUI

Take a picture
Start by creating this program. IO Figure 1 A simple stop-frame animation

Imports ---------------
from guizero import App, Picture, PushButton
from picamera import PiCamera

Functions -------------

def capture_image():
camera.capture("frame.jpg")
viewer.image = "frame.jpg"

Variables -------------

camera = PiCamera(resolution="400x400")

app = App(title="Stop frame animation")
take_next_picture = PushButton(app, text="Take picture",
command=capture_image)

viewer = Picture(app)

app.display()

Note that the higher the resolution, the greater the processing time. 400x400 is small but really
quick to process.

Chapter 11 Stop-frame Animation 125

The GUI contains a PushButton and
Picture. When the button is pressed, the
capture_image function is called. The
function uses the camera to capture an
image and save it as frame.jpg. The picture
is then displayed in the Picture widget.

Test the program (stopframe1.py,
page 131). When you click the ‘Take
picture’ button, the image should be
displayed on the GUI (Figure 2).

Take multiple images
and save to a GIF
An animation is made of multiple pictures,

known as frames. Each frame in the O Figure 2 Take a picture
animation will be slightly different to the
last and when played together at speed, the animation will appear to move.

In this step, you will change your GUI to keep a list of all the frames taken and use PIL
(Python Imaging Library) to save the frames as an animated GIF which will be displayed in the
viewer. At the top of your program, import the Image module from PIL:

from PIL import Image
Create a list to store the frames of your animation:

frames = []

To keep track of how many frames have been taken, import a Text widget, add it to your app,
and set it to 0.

from guizero import App, Picture, PushButton, Text

total_frames = Text(app, text="0")

Each time a new image is captured, you will need to open it and append it to your list of frames:

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

def capture_image():
camera.capture("frame.jpg")
viewer.image = "frame.jpg"

frame = Image.open("frame.jpg")
frames.append(frame)
total_frames.value = len(frames)

The 1en (length) of the frames list is then used to update the text in total_frames.
Your program should now look similar to stopframe2.py. Test it and make sure the number
of frames increases each time you take a picture.

Save as a GIF
You can PIL to save all the frames as one animated GIF. Create a new save_animation
function to save the frames as animation.gif.

def save_animation():
if len(frames) > 0O:
viewer.show()
frames[0].save(
"animation.gif",
save_all=True,
append_images=frames[1:])
viewer.image = "animation.gif"
else:
viewer.hide()

There is a lot happening here, but by breaking down the code you can see how this works.
If the number of frames in the list is greater than 0, then the viewer is shown, otherwise it
is hidden:

if len(frames) > O:
viewer.show()
else:
viewer.hide()

The frames are then saved to a file called animation.gif. The first frame (frames[@]) is saved,
the remaining frames (frames[1:]) are appended, and all are saved to the animated GIF:

Chapter 11 Stop-frame Animation 127

frames[0].save(
"animation.gif",
save_all=True,
append_images=frames[1:])

The animation.gif is then shown in the viewer:
viewer.image = "animation.gif"

Call the save_animation function at the end of the capture_image function to create and
display the animation:

def capture_image():
camera.capture("frame.jpg")
viewer.image = "frame.jpg"

save_animation()
Your code should now be similar to stopframe3.py. Test it out.

Delete the last frame
At the moment, if you make a mistake while creating your animated GIF, you have to start
again from the beginning.

You should modify your GUI to allow the last frame taken to be deleted, so if a mistake is
made you can undo the change.

Create a new function which will remove or pop the last frame from the list, save the
changed animation, and then display it.

def delete_frame():
if len(frames) > O:
frames.pop()
total_frames.value = len(frames)

save_animation()

The length of the frames list is checked before attempting to pop the last item. An error would
be raised if you tried to pop an item from an empty list.

Add a PushButton to the GUI to call the delete_frame function, by inserting this code in
your app:

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

delete_last_picture = PushButton(controls, align="1left",
text="Delete last", command=delete_frame)

Note: You could also modify the GUI to allow you to delete any frame, not just the last one.

Changing the timing
Each frame is displayed for the default duration time of 100 milliseconds. Include a Slider
widget in your GUI to allow the duration to be changed.

Add it to the list of imports.

from guizero import App, Picture, PushButton, Text, Slider
Then create the widget in the app.

Text(app, text="Duration")
duration = Slider(app, start=100, end=1000, command=save_
animation)

The start and end parameters will be the minimum and maximum times you can set for the
frame duration.

Each time the slider is changed, the save_animation function will be run.

Update the save_animation function to use the duration value when saving the GIF.

frames[0].save(
"animation.gif",
save_all=True,
append_images=frames[1:],
duration=duration.value)

Your code should now resemble stopframe4.py. Try it out.

Chapter 11 Stop-frame Animation 129

CONSISTENT CAPTURES

As the camera is using "auto", each time a image is captured, the setting used may
change. This will cause each image to be slightly different and will cause a flickering in

your animation.
By fixing the camera settings when the program starts, you can stop this from happening.
The required settings will depend on the lighting where you are taking picture.

This article from the picamera documentation provides more information and example
settings: rpf.io/picamera-consistent.

Align the controls

At the moment, the controls are taking up a lot of room stacked at the top of the GUI (Figure 3).

Create a Box and align it to the top of the GUI to hold the controls, first adding it to the imports.
from guizero import App, Picture, PushButton, Text, Slider, Box

controls = Box(app, align="top")

Modify the widgets so that they are in the controls box and set the align parameter to "left".
For example:

total_frames = Text(controls, text="0", align="left")

Aligning widgets to the left inside the box will _

make them stack up next to each other.

. ek it
Repeat this for rest of the controls so they
. . Isbsm um |
are all put into the top box and lined up next to e
each other. -

Your complete program should look similar
to 11-stop-frame.py.

I Figure 3 Controls stacked at the top

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe1.py / Python 3 § DOWNLOAD

Imports --------------- magpi.cc/guizerocode

from guizero import App, Picture, PushButton
from picamera import PiCamera

Functions -------------

def capture_image():
camera.capture('frame.jpg")
viewer.image = "frame.jpg”

app = App(title="Stop frame animation")

camera = PiCamera(resolution="400x400")
take_next_picture = PushButton(app, text="Take picture”,
command=capture_image)

viewer = Picture(app)

app.display()

stopframe2.py / python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text
from picamera import PiCamera
from PIL import Image

Functions -------------
def capture_image():

camera.capture('frame.jpg")
viewer.image = "frame.jpg”

Chapter 11 Stop-frame Animation 131

stopframe2.py (cont.) / python 3

frame = Image.open(' frame.jpg")

frames.append(frame)

total_frames.value = len(frames)
Variables -------------

frames = []

camera

PiCamera(resolution="400x400")

app = App(title="Stop frame animation")
total_frames = Text(app, text="0")
take_next_picture = PushButton(app, text="Take picture”,

command=capture_image)

viewer = Picture(app)

app.display()

stopframe3.py / python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text
from picamera import PiCamera
from PIL import Image

Functions -------------
def capture_image():

camera.capture(”frame.jpg")
viewer.image = "frame.jpg"”

frame = Image.open(“frame.jpg")

132 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe3.py (cont.) / python 3

frames.append(frame)
total_frames.value = len(frames)

save_animation()

def save_animation():
if len(frames) > 0:
viewer.show()
frames[0].save(
"animation.gif",
save_all=True,
append_images=frames[1:])
viewer.image = "animation.gif"
else:
viewer.hide()

Variables -------------

frames

[1

camera = PiCamera(resolution="400x400")

app = App(title="Stop frame animation")
total_frames = Text(app, text="0")
take_next_picture = PushButton(app, text="Take picture”,

command=capture_image)

viewer = Picture(app)

app.display()

Chapter 11 Stop-frame Animation 133

134

stopframe4.py / Python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text, Slider
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
camera.capture(”frame.jpg")
viewer.image = "frame.jpg"

frame = Image.open(' frame.jpg")
frames.append(frame)
total_frames.value = len(frames)

save_animation()

def save_animation():
if len(frames) > 0:
viewer.show()
frames[0].save(
"animation.gif",
save_all=True,
append_images=frames[1:],
duration=duration.value)
viewer.image = "animation.gif”
else:
viewer.hide()

def delete_frame():
if len(frames) > 0:
frames.pop()
total_frames.value = len(frames)

save_animation()

Variables -------------

frames

[1

camera = PiCamera(resolution="400x400")

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

stopframe&.py (cont.) / python 3

app = App(title="Stop frame animation")

total_frames = Text(app, text="0")

take_next_picture = PushButton(app, text="Take picture”,
command=capture_image)

delete_last_picture = PushButton(app, text="Delete last”,
command=delete_frame)

Text(app, text="Duration")

duration = Slider(app, start=100, end=1000, command=save_
animation)

viewer = Picture(app)

app.display()

11-stop-frame.py / python 3

Imports ---------------

from guizero import App, Picture, PushButton, Text, Slider, Box
from picamera import PiCamera
from PIL import Image

Functions -------------

def capture_image():
camera.capture(frame.jpg")
viewer.image = "frame.jpg"

frame = Image.open("frame.jpg")
frames.append(frame)
total_frames.value = len(frames)

save_animation()

def save_animation():
if len(frames) > 0:

viewer.show()
frames[0].save(

Chapter 11 Stop-frame Animation 135

11-stop-frame.py (cont.) / Python 3

"animation.gif",
save_all=True,
append_images=frames[1:],
duration=duration.value)
viewer.image = "animation.gif”
else:
viewer.hide()

def delete_frame():
if len(frames) > 0:
frames.pop()
total_frames.value = len(frames)

save_animation()

Variables -------------

frames

[1

camera = PiCamera(resolution="400x400")

app = App(title="Stop frame animation")

controls = Box(app, align="top")

total_frames = Text(controls, text="0", align="left")
take_next_picture = PushButton(controls, align="left", text="Take
picture”, command=capture_image)

delete_last_picture = PushButton(controls, align="left",
text="Delete last"”, command=delete_frame)

Text(controls, align="left", text="Duration")

duration = Slider(controls, align="left", start=100, end=1000,
command=save_animation)

viewer = Picture(app)

app.display()

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Chapter 11 Stop-frame Animation 137

Appendix A

Setting up

ere we will show you how to set everything up on your computer in order to create
Python programs with graphical user interfaces. To be able to run and edit the
applications in this book, you'll need three things:

1. The Python interpreter — this is the software that allows you to run programs written
in Python.

2. Anintegrated development environment (IDE) — software which includes a code editor
and the ability to run a program from that editor. Python comes bundled with an IDE called
IDLE, but you might choose to use a different IDE.

3. The guizero Python library — instructions for installing this are given in Chapter 1, but if you
are using Thonny please refer to the section below as the instructions are slightly different.

There are many IDEs available; here we're going to look at two of them — IDLE and Thonny.
IDLE is a very simple IDE which comes bundled with Python for Windows and Mac, and
is installed by default on some versions of Raspberry Pi OS. Thonny has some additional
features, but it is still geared towards beginners.

Occasionally, errors can occur while trying to get everything installed and running -
especially on older computers. If you experience errors while trying to use a particular IDE or
version of Python, try another IDE or Python version.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Installing Python and IDLE

Windows

Windows does not come with Python 3 pre-installed. If you think you may have installed
Python previously, you can check this by looking for ‘Python’ in the Start menu or under ‘Apps
and Features’ within Settings. If you intend to use Thonny as your IDE, you can skip ahead to
the ‘Thonny’ section as Python is automatically installed alongside it.

Go to python.org, mouse-over Downloads and click on Windows. Choose the option to
directly download the latest stable Python 3 release (most people will need the one labelled
Windows x86-64 executable installer, but this may vary depending on your computer). Once the
download is complete, run the program either via your web browser or from your Downloads
folder. Click ‘Install now’ to install using the default options. IDLE will also be installed and can
be opened via the Start menu or by searching for it by name.

Alternatively, if you have Windows 10, you could download the Microsoft Store package
of the latest Python version (currently 3.8). If you have any difficulties, full installation
instructions can be found at rpf.io/python-windows.

Mac

Although most versions of macOS come with a Python interpreter, it's version 2.7 which is not

compatible with guizero. You will need to install Python 3 alongside the existing installation.
Go to python.org, mouse-over Downloads and click on Mac OS X. Choose the latest stable

release, and click on macOS 64-bit installer. Once the download is complete, run the program

either via your web browser or from your Downloads folder. Install using the default options.

IDLE will also be installed and can now be opened from the Launchpad or Applications folder.

Raspberry Pi

Raspberry Pi OS (previously known as Raspbian) comes with Python already installed.
However, recent versions of the OS come with the Thonny but do not include IDLE. To install
IDLE, make sure you are connected to the internet, then open a Terminal and type:

sudo apt-get install idle3

If you have any problems getting the code in this book to run, try upgrading to the most recent
version of Raspberry Pi OS.

Appendix A Setting up

e 0 e Dimy Tolaen Weemuw el

{rpiium 0,76 fhagudan. ¥, K laidadnate, cab o0 Fikp, EAcERGGE) jemc eoaman 02 b
| FTnLl | o ebaad
|Tyew Tenle®: “darpilgii®, "dredlie® o "fhenana 1) ® fon s pideeseliom

FL e LT . = B %
Fos B Fomdl Ba Oeow Weses e

| FRRAED, FEEL, pyTEsE -
mack. 1T, ERESSH
LT Y (T4

[T dop 3pdo < 1580
F< T o DaaRaikea B Lt el % ol ey L
S EEIE S

§ TEREE PyiaB# DREA WRdE-RE, T = Fil®

[e WiNF AP IR CRE AW RE (FLE & [1AR, 8

§ adsd P B me ! wulip 0l

i 8 i ddii |@

i W i = Pyl = Enllad Liv

PR _mm s m | v [oy o i L 1

riieTe_Wwwah B [ladli
il [T TE e i i I It 11 ¥
LELELLFLE B

A i
TP = %
FEICET = 4%
TITLE = =

1 RELE WIDTH = WIDCE /F I
ERLE NEIEET = EEIGND 7t 3

FLESER OWCED = ¢ >

DO IDLE usually comes pre-installed with Python

IDEs

IDLE

IDLE is a basic IDE which is usually automatically installed alongside Python. Once IDLE starts,
the first thing you'll see is a window titled ‘Python 3.8.5 Shell’ (the number may be different
depending on which exact version you have). This window is called the shell and you can use it
to type a line of Python code and see the code run straight away.

For example, try typing the following:
6 + 2

Use the File menu > New file to open a Python file. A file allows you to type multiple lines of
code and then run them all, rather than each line running immediately when you press ENTER.
You can run the program by going to the Run menu and choosing Run Module — or by pressing
F5 on the keyboard. If an error occurs, you will see any error messages in the shell window.

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

| M L Waw Rl Dees Todl Hesw
I O® =

L s
i bspert pgeecs, poEruR, Eviise Haaremga,
i Espart math, wpa, resdos i i i P e e
| Frome erim import Eras
4 mn
. & + Fi g4 ; Fom] w0
wm lln Cherpary mydri

"l] B 5 "

LT TS

= x e 5 2 SN, O e GOV
PORF s ovarglen_dntn © (3,510 =y

i AL TELE gase regulras aC Liast werilot 3.5 6F Pyrhie, Flag %Gl Uiy v o
i FTT TERTS P ——

1

Bk wd b=

! ppoerd_veralon = [dntdad i¥ s lermeesici] slse & far 3 e pgamro.
b pgzerc_vercion ¢ [1,1]:

1 PrinTLTrELE geme regudrey ot Lesct wersion 1.0 of Fugass Tera
19 a4 it}

BIT

w8,

BELlr TDEE IR PACADS TIEmIRITY Pl e L LELEREE. |

BIT

I Thonny includes a debugger which may prove useful

Thonny

Thonny comes installed with recent versions of Raspberry Pi OS. For Windows and Mac
computers, you can download and install it from thonny.org. By default, Thonny uses a version
of Python which comes packaged with it, so even if you have already installed Python, Thonny
will ignore that version and use its own.

Use the File menu > New to open a Python file. You will type your code in the top white box
which has a number 1 to the left side. You can run the program by selecting the ‘Run current
script’ button, or by pressing F5 on the keyboard. If an error occurs, you will see any error
messages in the shell area at the bottom of the screen.

Thonny includes a debugger which allows you to step through the code one line at a time
and see how the variables change.

Because Thonny uses its own Python installation, you will need to install guizero from
inside Thonny in order for Thonny to be able to access it. Make sure you are connected to the
internet, then click on the Tools menu > Manage packages. In the window that appears, type
guizero in the box and click ‘Find package from PyPI'. Thonny will locate the package for you;
click Install to install guizero within Thonny's own Python environment.

Appendix A Setting up

Appendix B

Get started
with Python

nlike a visual, block-based coding environment like Scratch, Python is text-based:

you write instructions, using a simplified language and specific format, which the

computer then carries out. Python is a great next step for those who have already
used Scratch, offering increased flexibility and a more ‘traditional’ programming environment.
In the following examples, we're using the Thonny IDE (integrated development environment),
but you can use an alternative IDE if you prefer (see Appendix A).

First program

The top white box in the Thonny window is where you write your program script. Click in this
box and type the following code:

print ("Hello, World!")
Now click the Run icon in the Thonny toolbar and you will be asked to save your program first;
type a descriptive name, like ‘Hello World’, and click the Save button. Once your program has

saved, you'll see two messages appear in the Python shell area:

>>> %Run 'Hello World.py'
Hello, World!

Congratulations, you have successfully written and run a Python script! You will use the same
method for all of the programs in this book — write the code in the script area and then run it.

142 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Loops and code indentation
Just as Scratch uses stacks of jigsaw-like blocks to control which bits of the program are
connected to which other bits, Python has its own way of controlling the sequence in which its
programs run: indentation.

Create a new program by clicking on the New icon in the Thonny toolbar. You won't lose
your existing program; instead, Thonny will create a new tab above the script area. Type in the
following code:

print ("Loop starting!")
for i in range(10):
print ("Loop")

Click the Run icon in the Thonny toolbar, save your program with the name ‘Indentation’, and
watch the shell area for its output. See if you can work out what is happening.

The first line prints a message to the shell, just like your Hello World program. The second
tells Python to start a loop which runs 10 times — the number of times the loop runs is
controlled by the range(10) instruction. The third line is indented, which means it is pushed
inwards compared to the other lines. This indentation is how Python tells the difference
between instructions outside the loop and instructions inside the loop. In Scratch, the
instructions to be included in the loop are placed within the C-shaped block, and in Python they
are indented. So this means that the instruction to print the word ‘Loop’ is repeated 10 times.

You'll notice that when you pressed ENTER at the end of the third line, Thonny automatically
indented the next line, assuming it would be part of the loop. To remove this, just press the
BACKSPACE key once and then type a fourth and final line:

print ("Loop finished!")
Your four-line program is now complete. The first line sits outside the loop, and will only run

once; the second line sets up the loop; the third sits inside the loop and will run once for each
time the loop loops; and the fourth line sits outside the loop once again.

Appendix B Get started with Python

Run the program again. If you haven't made the Thonny window larger, you may need to use
the scroll bar to the right of the shell area to see its full output:

Loop starting!
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop finished!

v —— —

o T e

NEdE 0% - -

biutzy ¢ Wl ey ¢ bxbenistinngpy Varlibdsz

1 print {"Lopp starthng!") i Mt
L fer 1 in rangella): i 9
H print {“Loop”)
& print {“Loop finished!™)

el
Fap W tatd o
Eeeep wERptdrer!
Emop
Loop
Raeop
Seep
Loy
[f
g
g
B
Eowp
Boogr flnished!

[
-
=]

al

O Run the program and see the result in the shell area below

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Indentation is a powerful part of Python, and one of the most common reasons for a program
to not work as you expected. When looking for problems in a program, always double-check
the indentation.

Conditionals and Variables
You can create variables in your program to store values; for example, you might want to store
some data the user typed in, or the result of a calculation.

Start a new program by clicking the New icon on the Thonny menu, then type the following
into the script area:

my_name = input("What is your name? ")
Click the Run icon, save your program with the name ‘Input test’, and watch what happens in

the shell area: you'll be asked for your name. Type your name and press ENTER. The variables
area to the right of the Thonny window will automatically display the name of the variable

|y Rl Ve B [t Task Haly
& O%F - &
| Weaingy v ke py Wulibiae
1 my_name = Inpubl "What 1§ pour mese? ") Rarra ke
fry_ifeE Liend

Lhest
FER b beak. gy
What i your naset

Bl WY
Whai 53 e ness 7 lanrs

333 -

I Variable names and values are shown in the area on the right

Appendix B Get started with Python

(my_name) and its value (e.g. ‘Laura’). If you can't see the variables area, check on the View
menu that there is a tick next to Variables. This information remains displayed even when the

program isn't running, making it easy to see what your program has been doing.

The program has saved what you typed as your name as the value of the variable called
my_name. Using the input command is useful for basic Python programs, but when you
attempt the GUI programs in this book, you will learn about other ways to capture input from
the user and store it in variables to be used in your program.

To make your program do something useful with the name, add a conditional statement by
typing the following:

if my_name == "Clark Kent":
print ("You are Superman!")
else:

print ("You are not Superman!")

T il e fon [esw Tesl
J@E 0% ~= > @
ety ST ey Iy Varlibdsr
my_hawe = Taputbl"What 15 pour name? ") Harra Sy
if @y newe == "Clark fenc": rry_naree L’
print | “¥ou are Supermani®)
Else:
print {"You are mot Supermani®)

RN R

Laop Einishiss!

L

Hhaz I pour nesed Tairs
|

KEAT 0F YOUF NASET Lanca
Vi BEw 0of SupsrEes|

31 | v

O Unless you enter your name is entered as Clark Kent, you're not Superman

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Remember that when Thonny sees that your code needs to be indented, it will do so
automatically — but it doesn't know when your code needs to stop being indented, so you'll
have to delete the spaces yourself.

Click the Run icon and type your name into the shell area, as before. Unless your name
happens to be Clark Kent, you'll see an additional message ‘You are not Superman!’ in the
shell area. Click Run again, and this time type in the name ‘Clark Kent' — making sure to write it
exactly as in the program, with a capital C and a capital K. This time, the program recognises
that you are, in fact, Superman.

The == symbol tells Python to compare two values. In this case it will look to see if the value
of the variable my_name matches the text "Clark Kent".

We have now seen two different operators — the single equals sign (=) and the double
equals sign (==). They mean different things and it is important to know the difference.
The single equals (=) means “it IS equal to this value,” while a double equals (==) means
“IS IT equal to this value?” The first is used to assign a value to a variable, and the second
is used to compare two values.

When you are creating the programs in this book, you will collect input from the user, store
data in variables, display information on the screen, and use loops. The examples we have
worked through in this section are very basic and only allow the user to interact with the
program via text. We hope that now you know the basics of how to write a Python program
you will enjoy creating GUIs as a more graphical way of interacting with your program.

Appendix B Get started with Python

Appendix C

Widgets in guizero

idgets in guizero are how you create your graphical user interface. They are
the things which appear on the GUI, everything from the app itself to text boxes,
buttons and pictures.

Note: This is an overview of the widgets in guizero. Be sure to view the specific online
documentation for each widget for more information: lawsie.github.io/guizero.

Widgets

App
The App object is the basis of all GUIs created using guizero. R i o w

It is the main window which contains all of the other widgets.

app = App()
app.display()
Box
The Box object is an invisible container which can contain
other widgets. Teal fived Feia
A B walh i Dovder
box = Box(app)
box = Box(app, border=True)

148 CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

ButtonGroup

The ButtonGroup object displays a group of radio buttons,

allowing the user to choose a single option. T gl
T han

choice = ButtonGroup(app,

-
options=["cheese", "ham", "salad"]) -
CheckBox
The CheckBox object displays a check box to allow an option
to be ticked or un-ticked. [T check
checkbox = CheckBox(app, text="salad ?")
Combo
The Combo object displays a drop-down box allowing a
single item to be selected from a list of options. e |
chewp
il
combo = Combo(app, options=["cheese", e

"ham", "salad"])

Drawing

The Drawing object allows shapes, images, and text to
be created. Bl T

drawing = Drawing(app)

ListBox
The ListBox object displays a list of items from which either)
. . . chets
single or multiple items can be selected. e
b

listbox = ListBox(app, items=["cheese",
Ilhamll, "Salad“])

Appendix C Widgets in guizero 149

150

Picture
The Picture object displays an image.

picture = Picture(app, image="guizero.
png")

PushButton
The PushButton object displays a button with text or an
image, which calls a function when pressed.

Button
def do_nothing():
print("button pressed")

button = PushButton(app, command=do_nothing)
Slider
The Slider object displays a bar and selector which can be
used to specify a value in a range. 1

mm |

slider = Slider(app)
Text
The Text object displays non-editable text in your app —

| el ekl

useful for titles, labels, and instructions.

text = Text(app, text="Hello World")
TextBox
The TextBox object displays a text box which the user can

typein.

textbox = TextBox(app)

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Waffle
The Waffle object displays an nxn grid of squares with
custom dimensions and padding.

L1
1
O

waffle = Waffle(app)

Window i
The Window object creates a new window in guizero.

-f Qe =

window = Window(app)

Properties

All widgets are customisable through their properties. These properties are typical for most

widgets. Check a widget’s online documentation (e.g. lawsie.github.io/guizero/app) for details.

PROPERTY DATA TYPE DESCRIPTION

align string The alignment of this widget within its container
bg string, List The background colour of the widget

enabled boolean True if the widget is enabled

font string The font of the text

grid List [x,y] co-ordinates of this widget if in a ‘grid’
height int, string The height of the widget

master App, Window, Box The container to which this widget belongs
value int, string, bool The widget's current ‘value’, e.g. the text in a TextBox
visible boolean If this widget is visible

width size The width of the widget

ext_size int The size of the text

ext_color color The colour of the text

Appendix C Widgets in guizero

151

Methods

Widgets can be interacted with through their methods. The methods supported are dependent

on the widget, so check the documentation. These methods are typical across most widgets.

METHOD

DESCRIPTION

after(time, command,
args=None)
cancel(command)
destroy()

disable()

enable()

focus()

hide()

repeat(time, command,

args=None)
resize(width, height)
show()

update_command(command,

args=None)

Schedules a single call to command after time
milliseconds

Cancels a scheduled call to command

Destroys the widget

Disables the widget so that it cannot be interacted with
Enables the widget

Gives focus to the widget

Hides the widget from view
Schedules a call to command every time milliseconds

Sets the width and height of the widget

Displays the widget if it was previously hidden

Updates the function to call when the widget is used

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Appendix C Widgets in guizero 153

CREATE GRAPHICAL USER INTERFACES WITH PYTHON

Create your own
graphical user interfaces
on any computer

Would you like to add buttons, boxes, pictures and colours and more to
your Python programs? This book will show you how to create Python
desktop applications using the guizero library, which is quick, accessible,
and understandable for all.

This book is suitable for everyone, from beginners to experienced Python
programmers who want to explore graphical user interfaces (GUIs).

There are ten fun projects for you to create, including a painting program,
an emoji match game, and a stop-motion animation creator.
v/ Create games and fun Python programs
v/ Learn how to create your own graphical user interfaces
v/ Use windows, text boxes, buttons, images, and more
v/ Learn about event-based programming

v/ Explore good (and bad) user interface design

Raspberry Pi

PRESS

	001_guizero_COVER_DIGITAL
	002-007_guizero_INTRO_PK1_SR_PK2
	008-011_guizero_CHAPTER 1_PK1_PK2_PK3_SR
	012-017_guizero_CHAPTER 2_PK1_SR_PK2_SR
	018-025_guizero_CHAPTER 3_PK3_PK4_PK5_PK6_SR
	026-035_guizero_CHAPTER 4_PK1_PK2_PK3_SR
	036-043_guizero_CHAPTER 5_PK1_PK2_SR
	044-061_guizero_CHAPTER 6_PK1_SR_PK2_PK3_SR
	062-077_guizero_CHAPTER 7_PK1_SR_PK2_SR
	078-091_guizero_CHAPTER 8_PK1_SR_PK2_SR
	092-109_guizero_CHAPTER 9_PK1_SR_PK2_SR_PK3
	110-123_guizero_CHAPTER 10_PK1_SR_PK2_PK3_SR
	124-137_guizero_CHAPTER 11_PK1_SR
	138-141_guizero_APPENDIX A_PK1
	142-147_guizero_APPENDIX B_PK1
	148-155_guizero_APPENDIX C_PK1
	156_guizero_COVER_DIGITAL

