Intro to Database
15-445/ 15_-64?“‘

gy @& Fall2021

Andrew Crotty
Computer Science
Carnegie Mellon University

LATE POLICY

You have a total of 4 late days for projects only.

— E.g., one project 4 days late, or four projects each 1 day late.

— Late days rounded up to nearest integer. E.g., a submission
that is 4 hours late will count as 1 day late.

— If you hand in a homework late (or have used up your
extension days for projects), you will lose 25% per day.
After 4 days, the grade will be 0%.

$CMU-DB

15-445/645 (Fall 2021)

OFFICE HOURS

TA office hours have been added to the website.

We will have both in-person and remote (Zoom)
options.

For in-person office hours, we are currently
booking space.

Will be finalized by the end of this week.

$CMU-DB

15-445/645 (Fall 2021)

RELATIONAL LANGUAGES

User only needs to specify the answer that they
want, not how to compute it.

The DBMS is responsible for efficient evaluation
of the query.

— High-end systems have a sophisticated query optimizer
that can rewrite queries and search for optimal execution
strategies.

$CMU-DB

15-445/645 (Fall 2021)

SQL HISTORY

[BM's first query language was called "SQUARE".

Originally developed in 1974 as "SEQUEL" for

[IBM System R prototype DBMS.
— Structured English Query Language
— Adopted by Oracle in the 1970s.

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).

ANSI Standard in 1986. ISO in 1987

— Structured Query Language
£2CMU-DB

15-445/645 (Fall 2021)

SQL HISTORY

Current standard is SQL:2016

— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 » Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 —» XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

$CMU-DB

15-445/645 (Fall 2021)

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition

— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not

sets (no duplicates).
£ CMU-DB

15-445/645 (Fall 2021)

TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Nested Queries

Common Table Expressions

Window Functions

$CMU-DB

15-445/645 (Fall 2021)

EXAMPLE DATABASE

student(sid, name, login, gpa) enrolled(sid,cid, grade)

sid name login age gpa sid cid grade

53666 | Kanye kanye@cs 44 (4.0 53666 15-445 C

53688 | Bieber jbieber@cs 27 3.9 53688 15-721 A

53655 | Tupac shakur@cs 25 3.5 53688 15-826 B

53655 15-445 B

course(cid, name) 53666 | 15-721 ¢

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-823 Advanced Topics in Databases

£CMU-DB

15-445/645 (Fall 2021)

BASIC SYNTAX

As we saw last class, the basic syntax for a query is:

SELECT columni1, column2,
FROM table
WHERE predicatel, predicate?2,

$CMU-DB

15-445/645 (Fall 2021)

BASIC SYNTAX

Get the names and GPAs of all students who are older
than 25 years old.

SELECT name, gpa
FROM student
WHERE age > 25

$CMU-DB

15-445/645 (Fall 2021)

BASIC SYNTAX

Get the names and GPAs of all students who are older
than 25 years old.

SELECT name, gpa Il ane, gpa (Projection)
FROM student
WHERE age > 25

$CMU-DB

15-445/645 (Fall 2021)

BASIC SYNTAX

Get the names and GPAs of all students who are older

than 25 years old.
SELECT name, gpa Il ane, gpa (ProOjection)
FROM student .
WHERE age > 25 Oge>25 (S€lection)

$CMU-DB

15-445/645 (Fall 2021)

BASIC SYNTAX: JOINS

Recall the relational algebra join operator (4)
from last class.

Which students got an A in 157217

SELECT s.name
FROM enrolled AS e, student AS s

WHERE e.grade = ‘A’ AND e.cid = ‘15-721’
AND e.sid = s.sid

$CMU-DB

15-445/645 (Fall 2021)

12

AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.

$CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM_student WHFRF login I TKF '%@cs'

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM_student WHFRF login I TKF '%@cs'

SELECT COUNT(*) AS cnt
FROM student WHFRF looin I TKF '%@cs'

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

14

MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a ‘@cs” login.

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

MULTIPLE AGGREGATES

Get the number of students and their average GPA that
have a ‘@cs” login.

AVG(gpa) COUNT(sid)

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs

£CMU-DB

15-445/645 (Fall 2021)

DISTINCT AGGREGATES

COUNT, SUM, AVG support DISTINCT

Get the number of unique students that have an “@cs”
login.

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

$CMU-DB

15-445/645 (Fall 2021)

DISTINCT AGGREGATES

COUNT, SUM, AVG support DISTINCT

Get the number of unique students that have an “@cs”
login.

SELECT COUNT(DISTINCT login) 3

FROM student WHERE login LIKE '%@cs'

£CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

$CMU-DB

15-445/645 (Fall 2021)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

SELECT AVG(s.gpa), e.cid 3.86 22?

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

£CMU-DB

15-445/645 (Fall 2021)

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

$CMU-DB

15-445/645 (Fall 2021)

18

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

s.sid s.gpa
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

£CMU-DB

15-445/645 (Fall 2021)

18

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

s.sid s.gpa
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

£CMU-DB

15-445/645 (Fall 2021)

18

GROUP BY

Project tuples into subsets and
calculate aggregates against

each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

AVG(s.gpa) e.cid

2.46 15-721
' 3.39 15-826

1.89 15-445

s.sid s.gpa
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445

£CMU-DB

15-445/645 (Fall 2021)

18

GROUP BY

Project tuples into subsets and SELECT AVG(s.gpa), e.cid

lculat t e FROM enrolled AS e, student AS s
calculate aggregates agains IS o en o o
each subset. GROUP BY e.cid

s.sid s.gpa

53435 53435 2.25 15-721 AVG(s.gpa) e.cid

53439 53439 2.70 15-721

2.46 |15-721
56023 56023 | 2.75 |15-826 # [3.39 [15-826 |
59439 59439 | 3.90 |15-826 1.89 |15-445
53961 53961 | 3.50 |15-826
58345 58345 | 1.89 |15-445

£CMU-DB

15-445/645 (Fall 2021)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

$CMU-DB

15-445/645 (Fall 2021)

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, |s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

$CMU-DB

15-445/645 (Fall 2021)

$CMU-DB

15-445/645 (Fall 2021)

GROUP BY

Non-aggregated values in SELECT output clause

must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, |s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

X

19

GROUP BY

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid, s.name

$CMU-DB

15-445/645 (Fall 2021)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9
GROUP BY e.cid

£CMU-DB

15-445/645 (Fall 2021)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

AND avg_gpa > 3.9
GROUP BY e.cid

$CMU-DB

15-445/645 (Fall 2021)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
AND avg_gpa > 3.9
GROUP BY e.cid

$CMU-DB

15-445/645 (Fall 2021)

$CMU-DB

15-445/645 (Fall 2021)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING avg_gpa > 3.9;

20

$CMU-DB

15-445/645 (Fall 2021)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9; x

20

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

$CMU-DB

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

AVG(s.gpa) e.cid

3.75

15-415

3.950000

15-721

3.900000

15-826

£CMU-DB

15-445/645 (Fall 2021)

avg_gpa e.cid
3.950000 | 15-721

20

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
DB2 Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('KaNyE') °QL-92

WHERE name = "KaNyE" MySQL

$CMU-DB

15-445/645 (Fall 2021)

STRING OPERATIONS

LIKE is used for string matching.
String-matching operators

— '%"' Matches any substring (including
empty strings).

— ' _" Match any one character

$CMU-DB

15-445/645 (Fall 2021)

SELECT
WHERE

* FROM enrolled AS e
e.cid LIKE '15-%"

SELECT
WHERE

* FROM student AS s
s.login LIKE '%@c_'

STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

$CMU-DB

15-445/645 (Fall 2021)

23

STRING OPERATIONS

SQL standard says to use | | operator to
concatenate two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'
SELECT name FROM student MSSQL

WHERE login = LOWER(name) + '@cs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')

£CMU-DB

15-445/645 (Fall 2021)

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.
Support/syntax varies wildly...

Demo: Get the # of days since the beginning of
the year.

$CMU-DB

15-445/645 (Fall 2021)

OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same
types as the input.

SELECT DISTINCT cid INTO Courselds °SQL-92
FROM enrolled;

CREATE TABLE Courselds (MySQL
SELECT DISTINCT cid FROM enrolled);

$CMU-DB

15-445/645 (Fall 2021)

OUTPUT REDIRECTION

Insert tuples from query into another table:

— Inner SELECT must generate the same columns as the
target table.

— DBMSs have different options/syntax on what to do with
integrity violations (e.g., invalid duplicates).

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM enrolled);

$CMU-DB

15-445/645 (Fall 2021)

27

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled
WHERE cid = '15-721"
ORDER BY grade

$CMU-DB

15-445/645 (Fall 2021)

£CMU-DB

15-445/645 (Fall 2021)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of

their columns.

SELECT sid, grade FROM enrolled
WHERE cid = "15-721'
ORDER BY grade

sid grade
53123 A
53334 A
53650 B
53666 D

28

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'
ORDER BY 1

$CMU-DB

15-445/645 (Fall 2021)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'
ORDER BY 1

SELECT sid FROM enrolled
WHERE cid = '15-721"
ORDER BY grade DESC, sid ASC

$CMU-DB

15-445/645 (Fall 2021)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'

ORDER BY 1
SELECT sid FROM enrolled %_
WHERE cid = "15-721' 53650
ORDER BY grade DESC, sid ASC gigi

£CMU-DB

15-445/645 (Fall 2021)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of
their columns.

SELECT sid, grade FROM enrolled

WHSELECT sid, grade FROM enrolled
Of WHERE cid = '15-721'
ORDER BY 1

SELECT sid FROM enrolled

WHSELECT sid FROM enrolled
OF WHERE cid = "'"15-721"
ORDER BY grade DESC, 1 ASC

$CMU-DB

15-445/645 (Fall 2021)

28

OUTPUT CONTROL

LIMIT <count> [offset]

— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

$CMU-DB

15-445/645 (Fall 2021)

29

OUTPUT CONTROL

LIMIT <count> [offset]
— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
LIMIT 20 OFFSET 10

$CMU-DB

15-445/645 (Fall 2021)

29

NESTED QUERIES

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

Outer Query ==p|SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

$CMU-DB

15-445/645 (Fall 2021)

Inner Query

30

NESTED QUERIES

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

Outer Query ==p|SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

$CMU-DB

15-445/645 (Fall 2021)

Inner Query

30

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445"'

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

£CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Get the names of students in '15-445

SELECT nameﬂlgwstudent
WHERE[sid (
SELECT|sid |FR@M™enrolled
WHERE cid = '15-445"

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

ALL— Must satisfy expression for all rows in the
sub-query.

ANY— Must satisfy expression for at least one row
in the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned.

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Get the names of students in ‘15-445’

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

£CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT MAX(e.sid), s.name

FROM enrolled AS e, student AS s x
WHERE e.sid = s.sid;

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE ...

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE ...

"Is the highest enrolled sid"

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student
WHERE sid is the
SELECT MAX(sid) FROM enrolled

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT sid, name FROM student m
WHERE sid IN (53688 |Bieber

SELECT MAX(sid) FROM enrolled

)

£CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT _sid __name FROM ctiident

WHEISELECT sid, name FROM student
S| WHERE sid IN (

) SELECT sid FROM enrolled

ORDER BY sid DESC LIMIT 1

$CMU-DB

15-445/645 (Fall 2021)

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find student record with the highest id that is enrolled
in at least one course.

SELECT _sid __name FROM ctiident

WHEI SELECT sid, name FROM student

s| WHE i (
) SISELECT student.sid, name
FROM student

) JOIN (SELECT MAX(sid) AS sid
FROM enrolled) AS max_e
ON student.sid = max_e.sid;

35

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

cid name

15-445 Database Systems

15-721 Advanced Database Systems
15-826 Data Mining

15-823 Advanced Topics in Databases

£CMU-DB

15-445/645 (Fall 2021)

sid cid grade
53666 |15-445 C
53688 |15-721 A
53688 |[15-826 B
53655 |15-445 B
53666 |[15-721 C

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table

)

$CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

‘15—823 ‘Advanced Topics in Databases \

£CMU-DB

15-445/645 (Fall 2021)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJ enrolled
WHERE |course.cid|= enrolled.cid

‘15—823 ‘Advanced Topics in Databases \

£CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

$CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableNake

Aggregation Functions

S2CMU-DB Special Functions

15-445/645 (Fall 2021)

37

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped

into a single output tuples.
How to “slice” up data
/ Can also sort

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableNake

Aggregation Functions

S2CMU-DB Special Functions

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

Special window functions:
— ROW_NUMBER()— # of the current row

— RANK()— Order position of the current
TOW.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

$CMU-DB

15-445/645 (Fall 2021)

38

WINDOW FUNCTIONS

Aggregation functions:; sid cid grade row_num
— Anything that we discussed earlier 53666 | 15-445 C 1
S . 1 . d f o . 53688 1 5_721 A
pecial window functions: SR 3
— ROW_NUMBER()— # of the current row 53655 | 15-445 B 4
— RANK()— Order position of the current 53666 | 15-721 C 5
TOW.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

£CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Aggregation functions: sid cid grade | row_num
— Anything that we discussed earlier 53666 | 15-445 C 1
S . 1 . d f o . 53688 1 5_721 A
pecial window functions: R T T
— ROW_NUMBER()— # of the current row 53655 | 15-445 B 4
— RANK()— Order position of the current 53666 | 15-721 C 5
TOW.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

£CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

$CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

The OVER keyword specifies how to cid sid
group together tuples when 15-445 | 53666

row_number

. . : 15-445 | 53655
computing the window function. 5721 | 3688

: 15-721 | 53666
Use PARTITION BY to specify group. 15-826 | 53688

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

£CMU-DB

15-445/645 (Fall 2021)

39

WINDOW FUNCTIONS

The OVER keyword specifies how to cid sid row_number
group together tuples when 15-445 | 53666 |1

computing the window function 15-445 153655 12
S ' 15-721 | 53688 |1

: 15-721 | 53666 |2
Use PARTITION BY to specify group. i [t

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

£CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

$CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

$CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

$CMU-DB

15-445/645 (Fall 2021)

WINDOW FUNCTIONS

Find the student with the second highest grade for each
course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS_rank

FROM enrolled) ﬁz—égﬂk;gg—_———i
WHERE |ranking. rank

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for

use in a larger query.
— Think of it like a temp table just for one query.

Alternative to nested queries and views.

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for

use in a larger query.
— Think of it like a temp table just for one query.

Alternative to nested queries and views.

WITH |cteName |AS (
SELECT 1

)
SELECT * FROM|cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

You can bind output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

You can bind output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

You can bind output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName [colXXX, colXXX)| AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

You can bind output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName [colXXX, colXXX)| AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

You can bind output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT * FROM cteName

$CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled
in at least one course.

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId

£CMU-DB

15-445/645 (Fall 2021)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled
in at least one course.

WITH cteSource (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student,|cteSource
WHERE student.sid = cteSource.maxId

$CMU-DB

15-445/645 (Fall 2021)

CTE — RECURSION

Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

Demo: CTEs!

£CMU-DB

15-445/645 (Fall 2021)

CTE — RECURSION

Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (

(SELECT 1)
UNION ALL
(SELECT |counterf* 1 FROM cteSource

WHERE counter < 10)

)
SELECT * FROM cteSource

Demo: CTEs!

£CMU-DB

15-445/645 (Fall 2021)

CONCLUSION

SQL is not a dead language.

You should (almost) always strive to compute your
answer as a single SQL statement.

$CMU-DB

15-445/645 (Fall 2021)

HOMEWORK #1

Write SQL queries to perform basic data analysis.
— Write the queries locally using SQLite.

— Submit them to Gradescope

— You can submit multiple times and use your best score.

Due: Sunday Sept 12" @ 11:59pm

https://15445.courses.cs.cmu.edu/fall2021/homeworkl

$CMU-DB

15-445/645 (Fall 2021)

NEXT CLASS

Storage Management

$CMU-DB

15-445/645 (Fall 2021)

