

15-445/645 (Fall 2021)

You have a total of 4 late days for projects only.

→ E.g., one project 4 days late, or four projects each 1 day late.

→ Late days rounded up to nearest integer. E.g., a submission
that is 4 hours late will count as 1 day late.

→ If you hand in a homework late (or have used up your
extension days for projects), you will lose 25% per day.
After 4 days, the grade will be 0%.

2

15-445/645 (Fall 2021)

TA office hours have been added to the website.

We will have both in-person and remote (Zoom)
options.

For in-person office hours, we are currently
booking space.

Will be finalized by the end of this week.

3

15-445/645 (Fall 2021)

User only needs to specify the answer that they
want, not how to compute it.

The DBMS is responsible for efficient evaluation
of the query.
→ High-end systems have a sophisticated query optimizer

that can rewrite queries and search for optimal execution
strategies.

4

15-445/645 (Fall 2021)

IBM's first query language was called "SQUARE".

Originally developed in 1974 as "SEQUEL" for
IBM System R prototype DBMS.
→ Structured English Query Language
→ Adopted by Oracle in the 1970s.

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

5

15-445/645 (Fall 2021)

Current standard is SQL:2016
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to
say that it supports SQL is SQL-92.

6

15-445/645 (Fall 2021)

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:
→ View definition
→ Integrity & Referential Constraints
→ Transactions

Important: SQL is based on bags (duplicates) not
sets (no duplicates).

7

15-445/645 (Fall 2021)

Aggregations + Group By

String / Date / Time Operations

Output Control + Redirection

Nested Queries

Common Table Expressions

Window Functions

8

15-445/645 (Fall 2021)

9

student(sid,name,login,gpa) enrolled(sid,cid,grade)

course(cid,name)

sid name login age gpa
53666 Kanye kanye@cs 44 4.0
53688 Bieber jbieber@cs 27 3.9
53655 Tupac shakur@cs 25 3.5

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

cid name
15-445 Database Systems
15-721 Advanced Database Systems
15-826 Data Mining
15-823 Advanced Topics in Databases

15-445/645 (Fall 2021)

As we saw last class, the basic syntax for a query is:

10

SELECT column1, column2, ...
FROM table
WHERE predicate1, predicate2, ...

15-445/645 (Fall 2021)

Get the names and GPAs of all students who are older
than 25 years old.

11

SELECT name, gpa
FROM student
WHERE age > 25

15-445/645 (Fall 2021)

Get the names and GPAs of all students who are older
than 25 years old.

11

SELECT name, gpa
FROM student
WHERE age > 25

Πname,gpa (Projection)

15-445/645 (Fall 2021)

Get the names and GPAs of all students who are older
than 25 years old.

11

SELECT name, gpa
FROM student
WHERE age > 25 σage>25 (Selection)

Πname,gpa (Projection)

15-445/645 (Fall 2021)

Recall the relational algebra join operator (⋈)
from last class.

Which students got an A in 15-721?

12

SELECT s.name
FROM enrolled AS e, student AS s
WHERE e.grade = ‘A’ AND e.cid = ‘15-721’
AND e.sid = s.sid

15-445/645 (Fall 2021)

Functions that return a single value from a bag of
tuples:
→ AVG(col)→ Return the average col value.
→ MIN(col)→ Return minimum col value.
→ MAX(col)→ Return maximum col value.
→ SUM(col)→ Return sum of values in col.
→ COUNT(col)→ Return # of values for col.

13

15-445/645 (Fall 2021)

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

14

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

14

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

14

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'
SELECT COUNT(*) AS cnt

FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

Aggregate functions can (almost) only be used in
the SELECT output list.

Get # of students with a “@cs” login:

14

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'
SELECT COUNT(*) AS cnt

FROM student WHERE login LIKE '%@cs'
SELECT COUNT(1) AS cnt

FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

Get the number of students and their average GPA that
have a “@cs” login.

15

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

Get the number of students and their average GPA that
have a “@cs” login.

15

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

AVG(gpa) COUNT(sid)

3.8 3

15-445/645 (Fall 2021)

COUNT, SUM, AVG support DISTINCT

Get the number of unique students that have an “@cs”
login.

16

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

15-445/645 (Fall 2021)

COUNT, SUM, AVG support DISTINCT

Get the number of unique students that have an “@cs”
login.

16

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

COUNT(DISTINCT login)

3

15-445/645 (Fall 2021)

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

17

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

15-445/645 (Fall 2021)

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

17

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

15-445/645 (Fall 2021)

Project tuples into subsets and
calculate aggregates against
each subset.

18

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

15-445/645 (Fall 2021)

Project tuples into subsets and
calculate aggregates against
each subset.

18

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

15-445/645 (Fall 2021)

Project tuples into subsets and
calculate aggregates against
each subset.

18

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

15-445/645 (Fall 2021)

Project tuples into subsets and
calculate aggregates against
each subset.

18

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

15-445/645 (Fall 2021)

Project tuples into subsets and
calculate aggregates against
each subset.

18

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

15-445/645 (Fall 2021)

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

19

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

15-445/645 (Fall 2021)

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

19

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

15-445/645 (Fall 2021)

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

19

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid X

15-445/645 (Fall 2021)

Non-aggregated values in SELECT output clause
must appear in GROUP BY clause.

19

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid X

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid, s.name

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

15-445/645 (Fall 2021)

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

20

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

AVG(s.gpa) e.cid

3.75 15-415
3.950000 15-721
3.900000 15-826

avg_gpa e.cid

3.950000 15-721

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

15-445/645 (Fall 2021)

21

String Case String Quotes

SQL-92 Sensitive Single Only

Postgres Sensitive Single Only

MySQL Insensitive Single/Double

SQLite Sensitive Single/Double

DB2 Sensitive Single Only

Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('KaNyE')

WHERE name = "KaNyE"

15-445/645 (Fall 2021)

LIKE is used for string matching.

String-matching operators
→'%' Matches any substring (including

empty strings).

→'_' Match any one character

22

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%'

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'

15-445/645 (Fall 2021)

SQL-92 defines string functions.
→ Many DBMSs also have their own unique functions

Can be used in either output and predicates:

23

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

15-445/645 (Fall 2021)

SQL standard says to use || operator to
concatenate two or more strings together.

24

SELECT name FROM student
WHERE login = LOWER(name) + '@cs'

SELECT name FROM student
WHERE login = LOWER(name) || '@cs'

SELECT name FROM student
WHERE login = CONCAT(LOWER(name), '@cs')

15-445/645 (Fall 2021)

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.

Support/syntax varies wildly…

Demo: Get the # of days since the beginning of
the year.

25

15-445/645 (Fall 2021)

Store query results in another table:
→ Table must not already be defined.
→ Table will have the same # of columns with the same

types as the input.

26

CREATE TABLE CourseIds (
SELECT DISTINCT cid FROM enrolled);

SELECT DISTINCT cid INTO CourseIds
FROM enrolled;

15-445/645 (Fall 2021)

Insert tuples from query into another table:
→ Inner SELECT must generate the same columns as the

target table.
→ DBMSs have different options/syntax on what to do with

integrity violations (e.g., invalid duplicates).

27

INSERT INTO CourseIds
(SELECT DISTINCT cid FROM enrolled);

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

sid grade

53123 A
53334 A
53650 B
53666 D

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade
SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY 1

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY 1

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

sid

53666
53650
53123
53334

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY 1

15-445/645 (Fall 2021)

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of

their columns.

28

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY 1

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, 1 ASC

15-445/645 (Fall 2021)

LIMIT <count> [offset]
→ Limit the # of tuples returned in output.
→ Can set an offset to return a “range”

29

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

15-445/645 (Fall 2021)

LIMIT <count> [offset]
→ Limit the # of tuples returned in output.
→ Can set an offset to return a “range”

29

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10

15-445/645 (Fall 2021)

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

30

15-445/645 (Fall 2021)

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

30

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

15-445/645 (Fall 2021)

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

30

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

15-445/645 (Fall 2021)

Queries containing other queries.

They are often difficult to optimize.

Inner queries can appear (almost) anywhere in
query.

30

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

15-445/645 (Fall 2021)

Get the names of students in '15-445'

31

SELECT name FROM student
WHERE ...

15-445/645 (Fall 2021)

Get the names of students in '15-445'

31

SELECT name FROM student
WHERE ...

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

15-445/645 (Fall 2021)

Get the names of students in '15-445'

31

SELECT name FROM student
WHERE ...

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

15-445/645 (Fall 2021)

Get the names of students in '15-445'

31

SELECT name FROM student
WHERE ...

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

15-445/645 (Fall 2021)

ALL→ Must satisfy expression for all rows in the
sub-query.

ANY→ Must satisfy expression for at least one row
in the sub-query.

IN→ Equivalent to '=ANY()' .

EXISTS→ At least one row is returned.

32

15-445/645 (Fall 2021)

Get the names of students in ‘15-445’

33

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

)

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

34

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

34

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

This won't work in SQL-92. It runs in SQLite, but
not Postgres or MySQL (v8 with strict mode).

34

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

SELECT sid, name FROM student
WHERE sid
SELECT MAX(sid) FROM enrolled

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

SELECT sid, name FROM student
WHERE sid
SELECT MAX(sid) FROM enrolled

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)

sid name

53688 Bieber

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

SELECT sid, name FROM student
WHERE sid
SELECT MAX(sid) FROM enrolled

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)

SELECT sid, name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
ORDER BY sid DESC LIMIT 1

)

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

35

SELECT sid, name FROM student
WHERE ...

SELECT sid, name FROM student
WHERE sid
SELECT MAX(sid) FROM enrolled

SELECT sid, name FROM student
WHERE sid IN (
SELECT MAX(sid) FROM enrolled

)

SELECT sid, name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
ORDER BY sid DESC LIMIT 1

)

SELECT student.sid, name
FROM student
JOIN (SELECT MAX(sid) AS sid

FROM enrolled) AS max_e
ON student.sid = max_e.sid;

15-445/645 (Fall 2021)

Find all courses that have no students enrolled in it.

36

SELECT * FROM course
WHERE ...

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53655 15-445 B

53666 15-721 C

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-823 Advanced Topics in Databases

15-445/645 (Fall 2021)

Find all courses that have no students enrolled in it.

36

SELECT * FROM course
WHERE ...

SELECT * FROM course
WHERE NOT EXISTS(

)

15-445/645 (Fall 2021)

Find all courses that have no students enrolled in it.

36

SELECT * FROM course
WHERE ...

SELECT * FROM course
WHERE NOT EXISTS(

)

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)

cid name

15-823 Advanced Topics in Databases

15-445/645 (Fall 2021)

Find all courses that have no students enrolled in it.

36

SELECT * FROM course
WHERE ...

SELECT * FROM course
WHERE NOT EXISTS(

)

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)

cid name

15-823 Advanced Topics in Databases

15-445/645 (Fall 2021)

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

37

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

15-445/645 (Fall 2021)

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

37

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

15-445/645 (Fall 2021)

Performs a "sliding" calculation across a set of
tuples that are related.

Like an aggregation but tuples are not grouped
into a single output tuples.

37

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

15-445/645 (Fall 2021)

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

38

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

15-445/645 (Fall 2021)

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

38

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

15-445/645 (Fall 2021)

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

38

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

15-445/645 (Fall 2021)

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

39

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

15-445/645 (Fall 2021)

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

39

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

15-445/645 (Fall 2021)

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

39

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

15-445/645 (Fall 2021)

You can also include an ORDER BY in the window
grouping to sort entries in each group.

40

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)

FROM enrolled
ORDER BY cid

15-445/645 (Fall 2021)

Find the student with the second highest grade for each
course.

41

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2

15-445/645 (Fall 2021)

Find the student with the second highest grade for each
course.

41

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2

15-445/645 (Fall 2021)

Find the student with the second highest grade for each
course.

41

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2

15-445/645 (Fall 2021)

Provides a way to write auxiliary statements for
use in a larger query.
→ Think of it like a temp table just for one query.

Alternative to nested queries and views.

43

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName

15-445/645 (Fall 2021)

Provides a way to write auxiliary statements for
use in a larger query.
→ Think of it like a temp table just for one query.

Alternative to nested queries and views.

43

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName

15-445/645 (Fall 2021)

You can bind output columns to names before the
AS keyword.

44

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

15-445/645 (Fall 2021)

You can bind output columns to names before the
AS keyword.

44

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

15-445/645 (Fall 2021)

You can bind output columns to names before the
AS keyword.

44

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

15-445/645 (Fall 2021)

You can bind output columns to names before the
AS keyword.

44

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

15-445/645 (Fall 2021)

You can bind output columns to names before the
AS keyword.

44

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT colXXX + colXXX FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

)
SELECT * FROM cteName

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

45

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId

15-445/645 (Fall 2021)

Find student record with the highest id that is enrolled
in at least one course.

45

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId

15-445/645 (Fall 2021)

Print the sequence of numbers from 1 to 10.

Demo: CTEs!

46

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

15-445/645 (Fall 2021)

Print the sequence of numbers from 1 to 10.

Demo: CTEs!

46

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource
WHERE counter < 10)

)
SELECT * FROM cteSource

15-445/645 (Fall 2021)

SQL is not a dead language.

You should (almost) always strive to compute your
answer as a single SQL statement.

47

15-445/645 (Fall 2021)

Write SQL queries to perform basic data analysis.
→ Write the queries locally using SQLite.
→ Submit them to Gradescope
→ You can submit multiple times and use your best score.

Due: Sunday Sept 12th @ 11:59pm

48

https://15445.courses.cs.cmu.edu/fall2021/homework1

15-445/645 (Fall 2021)

Storage Management

49

